Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (1) : 97-110    https://doi.org/10.1007/s12200-017-0755-z
REVIEW ARTICLE
Fiber-based optical trapping and manipulation
Hongbao XIN, Baojun LI()
Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
 Download: PDF(5400 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optical fiber serves as a versatile tool for optical trapping and manipulation owing to its many advantages over conventional optical tweezers, including ease of fabrication, compact configurations, flexible manipulation capabilities, ease of integration, and wide applicability. Here, we review recent progress in fiber-based optical trapping and manipulation, which includes mainly photothermal-based and optical-force-based trapping and manipulation. We focus on five topics in our review of progress in this area: massive photothermal trapping and manipulation, evanescent-field-based trapping and manipulation, dual-fiber tweezers for single-nanoparticle trapping and manipulation, single-fiber tweezers for single-particle trapping and manipulation, and single-fiber tweezers for multiple-particle/cell trapping and assembly.

Keywords optical trapping      photothermal effect      optical force      cell trapping and assembly     
Corresponding Author(s): Baojun LI   
Just Accepted Date: 30 October 2017   Online First Date: 29 November 2017    Issue Date: 29 April 2019
 Cite this article:   
Hongbao XIN,Baojun LI. Fiber-based optical trapping and manipulation[J]. Front. Optoelectron., 2019, 12(1): 97-110.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0755-z
https://academic.hep.com.cn/foe/EN/Y2019/V12/I1/97
Fig.1  Overall description of fiber-based optical trapping and manipulation. Both photothermal effect and optical force can be used for optical trapping and manipulation. Massive photothermal trapping and manipulation can be achieved using subwavelength diameter optical fiber (SDF) and tapered optical fiber (TF). For optical force based trapping and manipulation, the evanescent field at the surface of SDF can be used, and the optical force from dual fiber tweezers (DFTs) and single fiber tweezers (SFTs) can be used for single particle trapping and manipulation, and SFTs can be used for multiple trapping and assembly
Fig.2  Massive photothermal trapping and assembly of microparticles. (a) Schematic and (b) experimental results of massive trapping and assembly using TF [22]. (c) Schematic and (d) experimental results of massive trapping and assembly using SDF [13]
Fig.3  Massive migration of photothermal assembled particles using (a) TF [22] and (b) SDF [13]
Fig.4  Numerical calculation results of optical force on nanoparticles by the evanescent fields on surface of SDF [41]. (a)−(d) Examples of calculated optical force exerted on particles with different sizes. (e) Calculated optical force for particles with different diameters
Fig.5  Evanescent fields-based trapping and delivery of bacteria (E. coli) using SDF [43]. (a) and (b) Stable trapping of individual E. coli bacteria. (c) Long-range delivery of individual E. coli bacteria. (d) Delivery velocity as a function of optical power
Fig.6  Schematic for optical trapping and manipulation of particles using DFTs [57]
Fig.7  SFTs for single particle trapping and manipulation [19]. (a) Schematic for particle trapping and manipulation. Particles in gradient force (Fg) dominant region near the fiber end can be trapped, while those in the scattering force dominant region are driven away. (b) Simulated field distributions output from SFTs. (c) Calculated optical trapping along the longitudinal axis of the SFTs. (d) Calculated optical force and trapping potential along the transverse axis of the SFTs with distance of 4.5 mm to the fiber end
Fig.8  Optical orientation and shifting of single MWCNTs using optical fiber nanotip [67]. (a) Optical microscope image of an optical fiber nanotip. (b) Schematic of optical orientation of a single MWCNT. (c) Dark-field optical microscope images showing the orientation and shifting of a single MWCNT along the nanotip axis
Fig.9  Optical cotrapping of single UCNPs and bacteria for single bacteria labeling [70]. (a) Schematic for cotrapping and labeling. (b) Bright-field optical microscope imaging of cotrapping and labeling. (c) Dark-field imaging of cotrapping and labeling
Fig.10  Optical trapping and assembly of multiple particles by optical binding using SFTs [76]. (a) Schematic for the trapping and assembly. Particles are bound together by the cooperation of scattering force and gradient force. (b) Simulated light distributions along the assembled particle chains. (c) Calculated optical force at the end of particle chains along the central axis with different particle numbers. (d) Calculated transverse optical force at the end of the chain. (e) Examples of assembled particle chains
Fig.11  Simulation and calculation results for multiple cell trapping and assembly by optical gradient force using SFTs [79]. (a) Simulated light distributions along the assembled multiple cell chains, light can propagate along the cell chains. (b) Calculated optical trapping force for the end cell of each cell chain with different lengths
Fig.12  Optical formation of bacteria-based biophotonic waveguides (bio-WGs) using SFTs [71]. (a) Formed bio-WGs with different lengths. (b) Bio-WGs with different lengths for red light propagation. (c) Measured normalized optical power as a function of propagation distance. (d) Total loss as a function of propagation distance
1 AAshkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
https://doi.org/10.1103/PhysRevLett.24.156
2 D GGrier. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
https://doi.org/10.1038/nature01935 pmid: 12917694
3 KDholakia, P Reece, MGu. Optical micromanipulation. Chemical Society Reviews, 2008, 37(1): 42–55
https://doi.org/10.1039/B512471A pmid: 18197332
4 KDholakia, P Reece. Optical micromanipulation takes hold. Nano Today, 2006, 1(1): 18–27
https://doi.org/10.1016/S1748-0132(06)70019-6
5 K CNeuman, S M Block. Optical trapping. Review of Scientific Instruments, 2004, 75(9): 2787–2809
https://doi.org/10.1063/1.1785844 pmid: 16878180
6 CBustamante, Z Bryant, S BSmith. Ten years of tension: single-molecule DNA mechanics. Nature, 2003, 421(6921): 423–427
https://doi.org/10.1038/nature01405 pmid: 12540915
7 C LAsbury, A N Fehr, S M Block. Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 2003, 302(5653): 2130–2134
https://doi.org/10.1126/science.1092985 pmid: 14657506
8 AAshkin. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853–4860
https://doi.org/10.1073/pnas.94.10.4853 pmid: 9144154
9 AAshkin, J M Dziedzic, T Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 330(6150): 769–771
https://doi.org/10.1038/330769a0 pmid: 3320757
10 R S RRibeiro, OSoppera, A GOliva, AGuerreiro, P AJorge. New trends on optical fiber tweezers. Journal of Lightwave Technology, 2015, 33(16): 3394–3405
https://doi.org/10.1109/JLT.2015.2448119
11 RIsmaeel, T Lee, MDing, MBelal, GBrambilla. Optical microfiber passive components. Laser & Photonics Reviews, 2013, 7(3): 350–384
https://doi.org/10.1002/lpor.201200024
12 MDaly, M Sergides, SNic Chormaic. Optical trapping and manipulation of micrometer and submicrometer particles. Laser & Photonics Reviews, 2015, 9(3): 309–329
https://doi.org/10.1002/lpor.201500006
13 HLei, Y Zhang, XLi, BLi. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber. Lab on a Chip, 2011, 11(13): 2241–2246
https://doi.org/10.1039/c1lc20272c pmid: 21552637
14 HXin, H Lei, YZhang, XLi, B Li. Photothermal trapping of dielectric particles by optical fiber-ring. Optics Express, 2011, 19(3): 2711–2719
https://doi.org/10.1364/OE.19.002711 pmid: 21369092
15 ZLiu, C Guo, JYang, LYuan. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Optics Express, 2006, 14(25): 12510–12516
https://doi.org/10.1364/OE.14.012510 pmid: 19529686
16 KTaguchi, K Atsuta, TNakata, MIkeda. Levitation of a microscopic object using plural optical fibers. Optics Communications, 2000, 176(1–3): 43–47
https://doi.org/10.1016/S0030-4018(00)00499-5
17 S KMohanty, K S Mohanty, M W Berns. Organization of microscale objects using a microfabricated optical fiber. Optics Letters, 2008, 33(18): 2155–2157
https://doi.org/10.1364/OL.33.002155 pmid: 18794962
18 CLiberale, P Minzioni, FBragheri, FDe Angelis, EDi Fabrizio, ICristiani. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
https://doi.org/10.1038/nphoton.2007.230
19 HXin, R Xu, BLi. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Scientific Reports, 2012, 2(1): 818
https://doi.org/10.1038/srep00818 pmid: 23150782
20 C YSoong, W K Li, C H Liu, P Y Tzeng. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Optics Express, 2010, 18(3): 2168–2182
https://doi.org/10.1364/OE.18.002168 pmid: 20174045
21 SDuhr, D Braun. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Physical Review Letters, 2006, 97(3): 038103
https://doi.org/10.1103/PhysRevLett.97.038103 pmid: 16907547
22 HXin, X Li, BLi. Massive photothermal trapping and migration of particles by a tapered optical fiber. Optics Express, 2011, 19(18): 17065–17074
https://doi.org/10.1364/OE.19.017065 pmid: 21935067
23 HXin, D Bao, FZhong, BLi. Photophoretic separation of particles using two tapered optical fibers. Laser Physics Letters, 2013, 10(3): 036004
https://doi.org/10.1088/1612-2011/10/3/036004
24 HLei, Y Zhang, BLi. Particle separation in fluidic flow by optical fiber. Optics Express, 2012, 20(2): 1292–1300
https://doi.org/10.1364/OE.20.001292 pmid: 22274474
25 YZhang, H Lei, YLi, BLi. Microbe removal using a micrometre-sized optical fiber. Lab on a Chip, 2012, 12(7): 1302–1308
https://doi.org/10.1039/c2lc21055j pmid: 22337071
26 DLiao, H Yu, YZhang, BLi. Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip. Applied Optics, 2011, 50(20): 3711–3716
https://doi.org/10.1364/AO.50.003711 pmid: 21743585
27 RXu, H Xin, BLi. Photothermal formation of vortex flows by 1.55 mm light. AIP Advances, 2013, 3(5): 052120
https://doi.org/10.1063/1.4805080
28 RXu, H Xin, BLi. Massive assembly and migration of nanoparticles by laser-induced vortex flows. Applied Physics Letters, 2013, 103(1): 014102
https://doi.org/10.1063/1.4812990
29 JLu, H Yang, LZhou, YYang, S Luo, QLi, MQiu. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Physical Review Letters, 2017, 118(4): 043601
https://doi.org/10.1103/PhysRevLett.118.043601 pmid: 28186804
30 SKawata, T Sugiura. Movement of micrometer-sized particles in the evanescent field of a laser beam. Optics Letters, 1992, 17(11): 772–774
https://doi.org/10.1364/OL.17.000772 pmid: 19794626
31 KWang, E Schonbrun, K BCrozier. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Letters, 2009, 9(7): 2623–2629
https://doi.org/10.1021/nl900944y pmid: 19545160
32 JWang, A W Poon. Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices. Lab on a Chip, 2014, 14(8): 1426–1436
https://doi.org/10.1039/C3LC51186C pmid: 24567040
33 O GHellesø, PLøvhaugen, A ZSubramanian, J SWilkinson, B SAhluwalia. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on a Chip, 2012, 12(18): 3436–3440
https://doi.org/10.1039/c2lc40375g pmid: 22814473
34 GBrambilla, G S Murugan, J S Wilkinson, D J Richardson. Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32(20): 3041–3043
https://doi.org/10.1364/OL.32.003041 pmid: 17938693
35 G SMurugan, G Brambilla, J SWilkinson, D JRichardson. Optical propulsion of individual and clustered microspheres along sub-micron optical wires. Japanese Journal of Applied Physics, 2008, 47(8S1): 6716
36 F WSheu, H Y Wu, S H Chen. Using a slightly tapered optical fiber to attract and transport microparticles. Optics Express, 2010, 18(6): 5574–5579
https://doi.org/10.1364/OE.18.005574 pmid: 20389573
37 MDaly, V G Truong, S N Chormaic. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. Optics Express, 2016, 24(13): 14470–14482
https://doi.org/10.1364/OE.24.014470 pmid: 27410600
38 GSagué, E Vetsch, WAlt, DMeschede, ARauschenbeutel. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Physical Review Letters, 2007, 99(16): 163602
https://doi.org/10.1103/PhysRevLett.99.163602 pmid: 17995250
39 MDaly, V G Truong, C Phelan, KDeasy, S NChormaic. Nanostructured optical nanofibres for atom trapping. New Journal of Physics, 2014, 16(5): 053052
https://doi.org/10.1088/1367-2630/16/5/053052
40 RKumar, V Gokhroo, S NChormaic. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface. New Journal of Physics, 2015, 17(12): 123012
https://doi.org/10.1088/1367-2630/17/12/123012
41 LXu, Y Li, BLi. Size-dependent trapping and delivery of submicro-spheres using a submicrofibre. New Journal of Physics, 2012, 14(3): 033020
https://doi.org/10.1088/1367-2630/14/3/033020
42 YLi, L Xu, BLi. Optical delivery of nanospheres using arbitrary bending nanofibers. Journal of Nanoparticle Research, 2012, 14(4): 799
https://doi.org/10.1007/s11051-012-0799-3
43 HXin, C Cheng, BLi. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 2013, 5(15): 6720–6724
https://doi.org/10.1039/c3nr02088f pmid: 23783734
44 CXu, H Lei, YZhang, BLi. Backward transport of nanoparticles in fluidic flow. Optics Express, 2012, 20(3): 1930–1938
https://doi.org/10.1364/OE.20.001930 pmid: 22330433
45 HXin, B Li. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Optics Express, 2011, 19(14): 13285–13290
https://doi.org/10.1364/OE.19.013285 pmid: 21747483
46 HXin, B Li. Multi-destination release of nanoparticles using an optical nanofiber assisted by a barrier. AIP Advances, 2012, 2(1): 012166
https://doi.org/10.1063/1.3694933
47 LLi, H Xin, HLei, BLi. Optofluidic extraction of particles using a sub-microfiber. Applied Physics Letters, 2012, 101(7): 074103
https://doi.org/10.1063/1.4747153
48 YLi, L Xu, BLi. Gold nanorod-induced localized surface plasmon for microparticle aggregation. Applied Physics Letters, 2012, 101(5): 053118
https://doi.org/10.1063/1.4742259
49 CCheng, X Xu, HLei, BLi. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Scientific Reports, 2016, 6(1): 20433
https://doi.org/10.1038/srep20433 pmid: 26843143
50 HLei, C Xu, YZhang, BLi. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale, 2012, 4(21): 6707–6709
https://doi.org/10.1039/c2nr31993d pmid: 22996078
51 YZhang, B Li. Particle sorting using a subwavelength optical fiber. Laser & Photonics Reviews, 2013, 7(2): 289–296
https://doi.org/10.1002/lpor.201200087
52 YZhang, H Lei, BLi. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid. Applied Physics Express, 2013, 6(7): 072001
https://doi.org/10.7567/APEX.6.072001
53 AConstable, J Kim, JMervis, FZarinetchi, MPrentiss. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
https://doi.org/10.1364/OL.18.001867 pmid: 19829431
54 ELyons, G Sonek. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Applied Physics Letters, 1995, 66(13): 1584–1586
https://doi.org/10.1063/1.113859
55 KTaguchi, H Ueno, MIkeda. Rotational manipulation of a yeast cell using optical fibres. Electronics Letters, 1997, 33(14): 1249–1250
https://doi.org/10.1049/el:19970827
56 XXu, C Cheng, HXin, HLei, B Li. Controllable orientation of single silver nanowire using two fiber probes. Scientific Reports, 2014, 4(1): 3989
https://doi.org/10.1038/srep03989 pmid: 24496474
57 XXu, C Cheng, YZhang, HLei, B Li. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures. Scientific Reports, 2016, 6(1): 29449
https://doi.org/10.1038/srep29449 pmid: 27386838
58 ZHu, J Wang, JLiang. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Optics Express, 2004, 12(17): 4123–4128
https://doi.org/10.1364/OPEX.12.004123 pmid: 19483954
59 YGong, C Zhang, Q FLiu, YWu, H Wu, YRao, G DPeng. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Optics Express, 2015, 23(3): 3762–3769
https://doi.org/10.1364/OE.23.003762 pmid: 25836228
60 K SMohanty, C Liberale, SMohanty, VDegiorgio. In depth fiber optic trapping of low-index microscopic objects. Applied Physics Letters, 2008, 92(15): 151113
https://doi.org/10.1063/1.2908216
61 JBerthelot, S S Aćimović, M L Juan, M P Kreuzer, J Renger, RQuidant. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
https://doi.org/10.1038/nnano.2014.24 pmid: 24584272
62 HDeng, Y Zhang, TYuan, XZhang, YZhang, ZLiu, L Yuan. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
https://doi.org/10.1021/acsphotonics.6b01010
63 HXin, Y Li, LLi, RXu, B Li. Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber. Applied Physics Letters, 2013, 103(3): 033703
https://doi.org/10.1063/1.4813905
64 Z LLiu, Y X Liu, Y Tang, NZhang, F PWu, BZhang. Fabrication and application of a non-contact double-tapered optical fiber tweezers. Optics Express, 2017, 25(19): 22480–22489
https://doi.org/10.1364/OE.25.022480
65 HXin, Q Liu, BLi. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Scientific Reports, 2014, 4(1): 6576
https://doi.org/10.1038/srep06576 pmid: 25300713
66 M FDe Volder, S HTawfick, R HBaughman, A JHart. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539
67 HXin, B Li. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
https://doi.org/10.1038/lsa.2014.86
68 Y CLi, H B Xin, H X Lei, L L Liu, Y Z Li, Y Zhang, B JLi. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
https://doi.org/10.1038/lsa.2016.176
69 YLi, H Xin, XLiu, YZhang, HLei, B Li. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 2016, 10(6): 5800–5808
https://doi.org/10.1021/acsnano.5b08081 pmid: 27163754
70 HXin, Y Li, DXu, YZhang, C HChen, BLi. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
https://doi.org/10.1002/smll.201603418 pmid: 28092436
71 HXin, Y Li, XLiu, BLi. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
https://doi.org/10.1021/nl401870d pmid: 23786313
72 FGuo, P Li, J BFrench, ZMao, H Zhao, SLi, NNama, J R Fick, S J Benkovic, T J Huang. Controlling cell-cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 43–48
https://doi.org/10.1073/pnas.1422068112 pmid: 25535339
73 ATourovskaia, X Figueroa-Masot, AFolch. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab on a Chip, 2005, 5(1): 14–19
https://doi.org/10.1039/b405719h pmid: 15616734
74 D BWheeler, A E Carpenter, D M Sabatini. Cell microarrays and RNA interference chip away at gene function. Nature Genetics, 2005, 37(6s Suppl): S25–S30
pmid: 15920526
75 C THo, R Z Lin, W Y Chang, H Y Chang, C H Liu. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 2006, 6(6): 724–734
https://doi.org/10.1039/b602036d pmid: 16738722
76 HXin, R Xu, BLi. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser & Photonics Reviews, 2013, 7(5): 801–809
https://doi.org/10.1002/lpor.201300028
77 YLi, H Xin, XLiu, BLi. Non-contact intracellular binding of chloroplasts in vivo. Scientific Reports, 2015, 5(1): 10925
https://doi.org/10.1038/srep10925 pmid: 26043396
78 YLi, H Xin, CCheng, YZhang, BLi. Optical separation and controllable delivery of cells from particle and cell mixture. Nanophotonics, 2015, 4(3): 353–360
https://doi.org/10.1515/nanoph-2015-0008
79 HXin, Y Zhang, HLei, YLi, H Zhang, BLi. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre. Scientific Reports, 2013, 3(1): 1993
https://doi.org/10.1038/srep01993 pmid: 23771190
80 JHuang, X Liu, YZhang, BLi. Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes. Photonics Research, 2015, 3(6): 308–312
https://doi.org/10.1364/PRJ.3.000308
81 XLiu, J Huang, YZhang, BLi. Optical regulation of cell chain. Scientific Reports, 2015, 5(1): 11578
https://doi.org/10.1038/srep11578 pmid: 26098707
82 MChoi, M Humar, SKim, S HYun. Step‐index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27(27): 4081–4086
https://doi.org/10.1002/adma.201501603 pmid: 26045317
83 HXin, Y Li, BLi. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Advanced Functional Materials, 2015, 25(19): 2816–2823
https://doi.org/10.1002/adfm.201500287
84 HXin, Y Li, BLi. Bacteria‐based branched structures for bionanophotonics. Laser & Photonics Reviews, 2015, 9(5): 554–563
https://doi.org/10.1002/lpor.201500097
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed