Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 329-352    https://doi.org/10.1007/s12200-017-0765-x
REVIEW ARTICLE
Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes
Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG(), Junbiao PENG()
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
 Download: PDF(954 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Inkjet printing (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light-emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.

Keywords inkjet printing (IJP)      inks system      film formation      organic light-emitting diodes (OLEDs)      quantum dot light-emitting diodes (QLEDs)     
Corresponding Author(s): Lei WANG,Junbiao PENG   
Just Accepted Date: 08 November 2017   Online First Date: 01 December 2017    Issue Date: 21 December 2017
 Cite this article:   
Luhua LAN,Jianhua ZOU,Congbiao JIANG, et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front. Optoelectron., 2017, 10(4): 329-352.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0765-x
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/329
Fig.1  Schematic diagram of inkjet printing. (a) Continuous mode; (b) DOD mode
Fig.2  Multilayer LED device structure
Fig.3  Chemical structures of the solution-processable emitters
Fig.4  (a) Quantum dots with core/shell structure; (b) PL spectra of QDs with different size under UV light
Fig.5  (a) Synthesis mechanism of multicolor CQDs via solvothermal methods. (b) Images of multicolor CQDs with (left) and without (right) UV irradiation. Adapted with permission from Ref. [70]. Copyright 2017, John Wiley & Sons, Inc. (c) Comparison of PLQYs of CdSe/ZnS and CdSe/ZnS/ZnS QDs in solution phase versus solid film. PL decay curve in solution versus in solid film of (d) CdSe/ZnS and (e) CdSe/ZnS/ZnS QDs. Adapted with permission from Ref. [76]
mode driver particle size/mm viscosity (cP) surface tension/(dynes·cm−1) density/(g·cm−3)
continuous <1 1 – 10 25 – 70 ~ 1
DOD thermal <1 5 – 30 35 – 70 ~ 1
piezoelectric <1 1 – 20 35 – 70 ~ 1
Tab.1  Fluid properties requirements of ink
Fig.6  (a) PL microscopic images of distributed printed dot array on PEI modified substrate (a1–a4: QD inks with volume ratios of 0, 10, 20, and 30% oDBC). (b) 3D morphology image of a1–a4 single dot; (c) PL image of printed lines; (d) 3D morphology image of printed line in (c); (e) film thickness profile of 6 points. Adapted with permission from Ref. [95]
Fig.7  (a) Preparation of patterning PET film by wetting and dewetting treatment. (b) WCA on various post-treatment PET surfaces: (1) untreated PET film, (2) treated by hydrophilic APTMS, (3) treated by hydrophobic 3M Novec 1700, (4) selectively hydrophilic treatment by either O2/Ar plasma or UV/O3. (c) IJP test on type b-4 PET film. Adapted with permission from Ref. [102]
year technique printed layer specifications reference
1998
Hebner et al.
PLED
by IJP a
EML (polyvinylcarbazol (PVK): coumarin 6/47 (C6/47) or nile red) far worse than spin coating devices [108]
2000
Seiko Epson
AM-PLED
by IJP
EML (RPPV or PPV) size: 2 inch
pixel size: 11 mm × 82 mm
luminance: ~ 30 cd/m2
power consumption: ~ 0.7 W
[109]
2002
Philips
PM-PLED
by IJP
HTL(PEDOT:PSS)
EML(polyfluorenes(PF) and poly phenylene vinylene (PPV))
full color
sub-pixel size: 100 mm × 300 mm
resolution: 64 × 96
[110]
2004
Philips
AM-PLED
(LTPS-TFT)
by IJP
HTL (PEDOT:PSS)
EML
full color
size: 2.6 inch
resolution: 176 × RGB × 220
sub-pixel size: 79 µm × 237 µm
peak luminance: 250 cd/m2
CIE: R (0.66, 034), G (0.39, 0.58), B (0.16, 0.22)
[111]
2004
Philips
AM-PLED
(LTPS-TFT)
by IJP
HTL (PEDOT:PSS)
EML
full color
size: 13 inch (16:9)
resolution: 576 × RGB × 324
sub-pixel size: 165 µm × 501 µm
peak luminance: 600 cd/m2
frame rate: 50–60 Hz
panel thickness: 1.2–2 mm
[107]
2004
Osram
PM-PLED
by IJP
HTL (PEDOT:PSS)
EML
full color
resolution: 160 × RGB × 128
pixel size: 100 mm × 300 mm
refresh rate: 74 Hz
[112]
2006
Samsung and CDT
AM-PLED
(a-Si TFT)
by IJP
HTL (PEDOT:PSS)
EML
full color
size: 14.1 inch
resolution: 1280 × RGB × 768
pixel size: 80 µm
NTSC (%): 53%
[113]
2006
Sharp
AM-PLED
(Continuous Grain Silicon backbone)
by IJP
HTL (PEDOT:PSS)
IL (interlayer)
EML (polyfluorenes(PF) type)
full color
size: 3.6 inch (16: 9)
resolution: 640 × RGB × 360
pixel size: 0.042 mm × 0.126 mm
PPI: 202
luminance: 200 cd/m2
aperture ratio 24.5%
[114]
2009
Seiko Epson
AM-PLED
(LTPS-TFT)
by IJP
HTL
IL (interlayer)
EML
size: 14 inch
ppi: 60
aperture ratio: 40%
color: 6-bit full color
luminance: 200cd/m2
[115]
2013
Zheng et al.
PM-PLED
by IJP
Cathode (Ag NPs) full color
display area: 32.97 × 21.03 mm2
resolution: 96 × RGB × 64
pixel size: 0.33 mm × 0.33 mm
fill factor: 58%
gray level: 32 × 32 × 64= 65536
[116]
2013
AU Optronics
AM-OLED
(IGZO-TFT)
by IJP
HIL
HTL
EML
full color
size: 14 inch
resolution: 960 × RGB × 540
PPI: 79
luminance: 200 cd/m2
NTSC: 74.8%
aperture ratio: 24%
[117]
2014
AU Optronics
AM-PLED
(aITZO-TFT)
by IJP
HIL
HTL
EML
full color
size: 65 inch (1430 mm × 800 mm)
resolution: 1920 × RGB × 1080
ppi: 34
luminance: 200 cd/m2
NTSC: 75%
aperture ratio: 30%
[118]
2017
JOLED
AM-OLED
(LTPS-TFT)
(the emitter type is unkown)
by IJP
full color
size: 21.6 inch
resolution: 3840 × 2160
ppi: 204
luminance: 350 cd/m2
contrast ratio: 1000000: 1
panel thickness: 1.3 mm
panel weight: 500 g
[119]
2015
Olivier et al.
SMOLED
by IJP
HTL (QUPD)
EML (f-CHO-Acr)
display area: 0.44 cm2
luminance:<10 cd/m2
CE (at 10 V): 0.008 cd/A
PE (at 10 V): 0.003 lm/W
[120]
2010
Haverinen et al.
QLED
by IJP
EML (RGB QDs) full color
resolution: 640 × 480
peak luminance: 350 cd/m2
EQE= 0.24% (at 100 cd/m2)
[121]
2011
Samsung
AM-QLED
(HIZO-TFE)
by transfer printing
EML (RGB QDs) full color
size: 4 inch
resolution: 320 × RGB × 240
ppi: 100
aspect ratio: 4:3
brightness: 100 cd/m2
pixel size: 46 µm × 96 µm
aperture ratio: 25%
[122]
2015
Kim et al.
QLED
by EJP b
EML (CdSe/CdZnSeS green or CdSe/CdS/ZnS red QDs) green QLED: EQE= 2.5%,
peak luminance= 36000ced/m2
red QLED: EQE= 2.6%,
peak luminance= 11250ced/m2
[123]
2016
Han et al.
QLED
by IJP
EML (CdSe/CdS/ZnCdS QDs) turn-on voltage: 2.6 V
peak brightness: 2500 cd/m2
peak CE: 0.29 cd/A
ppi: 73
pixel size: 60 µm × 180 µm
[124]
2017
Liu et al.
QLED
by IJP
EML (CdSe/CdS QDs) turn-on voltage: 1.9 V (red)
pixel size: 67 µm × 170 µm
ppi: 73
[125]
2017
Jiang et al.
AM-QLED
(MOTFT)
by IJP
ETL (ZnO NPs)
EML (RGB QDs)
size: 2 inch
resolution: 200 × RGB × 150
sub-pixel size: 70 µm × 210 µm
ppi: 120
aperture ratio: 35%
[126]
Tab.2  Summary of reported printed EL displays (OLEDs and QLEDs)
Fig.8  (a)–(d) Light-on image of the full-color display panels fabricated by inkjet printing; (e) pixel structure for the 200-ppi device; (f) formula of TPP. Adapted with permission from Refs. [111,113,114,118,128]
Fig.9  (a)–(f) Chemical structures of emitters and modified molecules. (g) Schematic illustration of pixel array architecture of full-color panel. (h) Microscopic image of the backplane. PL images of (i) Red, (j) blue and (k) green monochrome displays under UV light. (l) Full-color display under UV light. Adapted with permission from Ref. [116]
Fig.10  Chemical structures of emitters of small molecules [120,135]. (a) QUPD; (b) f-CHO-Acr; (c) TBADN; (d) DPAVBi
device CE/(cd·A−1) CIE lifetime/h
red at 500 cd/m2 9 (0.66, 0.33) 53000
green at 1000 cd/m2 35 (0.33, 0.63) 52000
light blue at 500 cd/m2 18 (0.19, 0.40) 3000
blue at 500 cd/m2 6 (0.15, 0.23) 1000
Tab.3  Performances of red, green, and blue printable phosphorescent OLEDs
Fig.11  (a) EL image of a 4-inch full-color AM-QLED display. Adapted with permission from Ref. [122]. Copyright © 2011, Macmillan Publishers Limited. (b) PL image of a QD dot array patterned by repeated aligned intaglio transfer printing on a PET substrate. Adapted with permission from Ref. [142]. Copyright © 2011, Macmillan Publishers Limited. (c) EL microscope image of an inkjet-printed red QLED. Adapted with permission from Ref. [124]. Copyright © 2016, John Wiley & Sons, Inc. (d) Microscopic image of pixel arrays. (Inset: enlarged image of RGB sub-pixels). (e) EL microscopic image of RGB sub-pixel arrays. (f) Photograph of 2-inch full-color AM-QLEDs display. Adapted with permission from Ref. [126]
  
  
  
  
  
1 G Blasse, A Bril. A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Applied Physics Letters, 1967, 11(2): 53–55
https://doi.org/10.1063/1.1755025
2 T P Brody, J A Asars, G D A Dixon. 6 × 6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Transactions on Electron Devices, 1973, 20(11): 995–1001
https://doi.org/10.1109/T-ED.1973.17780
3 C W Tang, S A VanSlyke. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
https://doi.org/10.1063/1.98799
4 J H Burroughes, D D C Bradley, A R Brown, R N Marks, K Mackay, R H Friend, P L Burns, A B Holmes. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539–541
https://doi.org/10.1038/347539a0
5 V L Colvin, M C Schlamp, A P Alivisatos. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354–357
https://doi.org/10.1038/370354a0
6 M A Baldo, D F O’brien, Y You, A Shoustikov, S Sibley, M E Thompson, S R Forrest. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698): 151–154
https://doi.org/10.1038/25954
7 H Uoyama, K Goushi, K Shizu, H Nomura, C Adachi. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428): 234–238
https://doi.org/10.1038/nature11687 pmid: 23235877
8 M C Gather, A Köhnen, K Meerholz. White organic light-emitting diodes. Advanced Materials, 2011, 23(2): 233–248
https://doi.org/10.1002/adma.201002636 pmid: 20976676
9 T Granlund, T Nyberg, L S Roman, M Svensson, O Inganäs. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 2000, 12(4): 269–273
https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<269::AID-ADMA269>3.0.CO;2-5
10 M C Gather, A Köhnen, A Falcou, H Becker, K Meerholz. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Advanced Functional Materials, 2007, 17(2): 191–200
https://doi.org/10.1002/adfm.200600651
11 P E Malinowski, T H Ke, A Nakamura, T Y Chang, P Gokhale, S Steudel, D Janssen, Y Kamochi, I Koyama, Y Iwai, P Heremans. 16.3: true-color 640 ppi OLED arrays patterned by CA i-line photolithography. SID Symposium Digest of Technical Papers, 2015, 46(1): 215–218
12 H Jin, J C Sturm. 40.2: super-high resolution transfer printing for full-color OLED display patterning. Sid Symposium Digest of Technical Papers, 2009, 40(1): 597–599
13 P Calvert. Inkjet printing for materials and devices. Chemistry of Materials, 2001, 13(10): 3299–3305
https://doi.org/10.1021/cm0101632
14 E Tekin, P J Smith, U S Schubert. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008, 4(4): 703–713
https://doi.org/10.1039/b711984d
15 M Singh, H M Haverinen, P Dhagat, G E Jabbour. Inkjet printing-process and its applications. Advanced Materials, 2010, 22(6): 673–685
https://doi.org/10.1002/adma.200901141 pmid: 20217769
16 Z Zhan, J An, Y Wei, V T Tran, H Du. Inkjet-printed optoelectronics. Nanoscale, 2017, 9(3): 965–993
https://doi.org/10.1039/C6NR08220C pmid: 28009893
17 G Cummins, M P Y Desmulliez. Inkjet printing of conductive materials: a review. Circuit World, 2012, 38(4): 193–213
https://doi.org/10.1108/03056121211280413
18 A Kamyshny, S Magdassi. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515–3535
https://doi.org/10.1002/smll.201303000 pmid: 25340186
19 F Huang, Y J Cheng, Y Zhang, M S Liu, A K Y Jen. Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. Journal of Materials Chemistry, 2008, 18(38): 4495–4509
https://doi.org/10.1039/b804977g
20 F Huang, H Wu, Y Cao. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39(7): 2500–2521
https://doi.org/10.1039/b907991m pmid: 20571672
21 J Meyer, S Hamwi, M Kröger, W Kowalsky, T Riedl, A Kahn. Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 2012, 24(40): 5408–5427
https://doi.org/10.1002/adma.201201630 pmid: 22945550
22 X Liang, S Bai, X Wang, X Dai, F Gao, B Sun, Z Ning, Z Ye, Y Jin. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46(6): 1730–1759
https://doi.org/10.1039/C6CS00122J pmid: 28245014
23 Y Z Lee, X Chen, S A Chen, P K Wei, W S Fann. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections. Journal of the American Chemical Society, 2001, 123(10): 2296–2307
https://doi.org/10.1021/ja003135d pmid: 11456878
24 G Saikia, R Singh, P J Sarmah, M W Akhtar, J Sinha, M Katiyar, P K Iyer. Synthesis and characterization of soluble poly (p-phenylene) derivatives for PLED applications. Macromolecular Chemistry and Physics, 2009, 210(24): 2153–2159
https://doi.org/10.1002/macp.200900387
25 A L Ding, J Pei, Y H Lai, W Huang. Phenylene-functionalized polythiophene derivatives for light-emitting diodes: their synthesis, characterization and properties. Journal of Materials Chemistry, 2001, 11(12): 3082–3086
https://doi.org/10.1039/b103717j
26 J Lee, H J Cho, N S Cho, D H Hwang, J M Kang, E Lim, J I Lee, H K Shim. Enhanced efficiency of polyfluorene derivatives: organic-inorganic hybrid polymer light-emitting diodes. Journal of Polymer Science Part A, Polymer Chemistry, 2006, 44(9): 2943–2954
https://doi.org/10.1002/pola.21413
27 R Wang, W Z Wang, G Z Yang, T Liu, J Yu, Y Jiang. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(3): 790–802
https://doi.org/10.1002/pola.22424
28 Q Hou, Y Xu, W Yang, M Yuan, J Peng, Y Cao. Novel red-emitting fluorene-based copolymers. Journal of Materials Chemistry, 2002, 12(10): 2887–2892
https://doi.org/10.1039/b203862e
29 R Guan, Y Xu, L Ying, W Yang, H Wu, Q Chen, Y Cao. Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3, 6-carbazole-co-2, 6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19(4): 531–537
https://doi.org/10.1039/B813927J
30 J Liang, S Zhao, X F Jiang, T Guo, H L Yip, L Ying, F Huang, W Yang, Y Cao. White polymer light-emitting diodes based on exciplex electroluminescence from polymer blends and a single polymer. ACS Applied Materials & Interfaces, 2016, 8(9): 6164–6173
https://doi.org/10.1021/acsami.5b11926 pmid: 26886726
31 J Liang, Z Zhong, S Li, X F Jiang, L Ying, W Yang, J Peng, Y Cao. Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(9): 2397–2403
https://doi.org/10.1039/C6TC05264A
32 F Liu, C Tang, Q Q Chen, S Z Li, H B Wu, L H Xie, B Peng, W Wei, Y Cao, W Huang. Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009, 10(2): 256–265
https://doi.org/10.1016/j.orgel.2008.11.014
33 Y Li, A Y Li, B X Li, J Huang, L Zhao, B Z Wang, J W Li, X H Zhu, J Peng, Y Cao, D G Ma, J Roncali. Asymmetrically 4,7-disubstituted benzothiadiazoles as efficient non-doped solution-processable green fluorescent emitters. Organic Letters, 2009, 11(22): 5318–5321
https://doi.org/10.1021/ol9022563 pmid: 19852492
34 Z Fan, C Cheng, S Yu, K Ye, R Sheng, D Xia, C Ma, X Wang, Y Chang, G Du. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine. Optical Materials, 2009, 31(6): 889–894
https://doi.org/10.1016/j.optmat.2008.10.023
35 Inaoka S, Roitman D B, Advincula R C. Cross-linked polyfluorene polymer precursors: electrodeposition, PLED device characterization, and two-site co-deposition with poly (vinylcarbazole). Chemistry of Materials, 2005, 17(26): 6781–6789
https://doi.org/10.1021/cm051440y
36 X Gong, J C Ostrowski, G C Bazan, D Moses, A J Heeger. Red electrophosphorescence from polymer doped with iridium complex. Applied Physics Letters, 2002, 81(20): 3711–3713
https://doi.org/10.1063/1.1511283
37 X Gong, J C Ostrowski, D Moses, G C Bazan, A J Heeger. Electrophosphorescence from a polymer guest–host system with an iridium complex as guest: Förster energy transfer and charge trapping. Advanced Functional Materials, 2003, 13(6): 439–444
https://doi.org/10.1002/adfm.200304334
38 H Sirringhaus, T Kawase, R H Friend, T Shimoda, M Inbasekaran, W Wu, E P Woo. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126
https://doi.org/10.1126/science.290.5499.2123 pmid: 11118142
39 J Liu, J Zou, W Yang, H Wu, C Li, B Zhang, J Peng, Y Cao. Highly efficient and spectrally stable blue-light-emitting polyfluorenes containing a dibenzothiophene-S, S-dioxide unit. Chemistry of Materials, 2008, 20(13): 4499–4506
https://doi.org/10.1021/cm800129h
40 Y Li, H Wu, J Zou, L Ying, W Yang, Y Cao. Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Organic Electronics, 2009, 10(5): 901–909
https://doi.org/10.1016/j.orgel.2009.04.021
41 J Liu, S Hu, W Zhao, Q Zou, W Luo, W Yang, J Peng, Y. CaoNovel spectrally stable saturated blue-light-emitting poly[(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide)]s. Macromolecular Rapid Communications, 2010, 31(5): 496–501
https://doi.org/10.1002/marc.200900547 pmid: 21590933
42 L Zhao, J Zou, J Huang, C Li, Y Zhang, C Sun, X Zhu, J Peng, Y Cao, J Roncali. Asymmetrically 9, 10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9(5): 649–655
https://doi.org/10.1016/j.orgel.2008.04.006
43 V I Klimov. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Journal of Physical Chemistry B, 2006, 110(34): 16827–16845
https://doi.org/10.1021/jp0615959 pmid: 16927970
44 M G Bawendi, M L Steigerwald, L E Brus. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annual Review of Physical Chemistry, 1990, 41(1): 477–496
https://doi.org/10.1146/annurev.pc.41.100190.002401
45 A P Alivisatos, A L Harris, N J Levinos, M L Steigerwald, L E Brus. Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics, 1988, 89(7): 4001–4011
https://doi.org/10.1063/1.454833
46 Y Wang, A Suna, J McHugh, E F Hilinski, P A Lucas, R D Johnson. Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs. Journal of Chemical Physics, 1990, 92(11): 6927–6939
https://doi.org/10.1063/1.458280
47 W C W Chan, S Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018
https://doi.org/10.1126/science.281.5385.2016 pmid: 9748158
48 F Zhang, X W He, W Y Li, Y K Zhang. One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. Journal of Materials Chemistry, 2012, 22(41): 22250–22257
https://doi.org/10.1039/c2jm33560c
49 C Jiang, H Liu, B Liu, Z Zhong, J Zou, J Wang, L Wang, J Peng, Y Cao. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31: 82–89
https://doi.org/10.1016/j.orgel.2016.01.009
50 A L Rogach, N Gaponik, J M Lupton, C Bertoni, D E Gallardo, S Dunn, N L Pira, M Paderi, P Repetto, S G Romanov, C O’Dwyer, C M S Torres, A Eychmuller. Light-emitting diodes with semiconductor nanocrystals. Angewandte Chemie International Edition, 2008, 47(35): 6538–6549
https://doi.org/10.1002/anie.200705109
51 A H Mueller, M A Petruska, M Achermann, D J Werder, E A Akhadov, D D Koleske, M A Hoffbauer, V I Klimov. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Letters, 2005, 5(6): 1039–1044
https://doi.org/10.1021/nl050384x pmid: 15943439
52 A G Pattantyus-Abraham, I J Kramer, A R Barkhouse, X Wang, G Konstantatos, R Debnath, L Levina, I Raabe, M K Nazeeruddin, M Grätzel, E H Sargent. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4(6): 3374–3380
https://doi.org/10.1021/nn100335g pmid: 20496882
53 G Konstantatos, I Howard, A Fischer, S Hoogland, J Clifford, E Klem, L Levina, E H Sargent. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180–183
https://doi.org/10.1038/nature04855 pmid: 16838017
54 W K Koh, S R Saudari, A T Fafarman, C R Kagan, C B Murray. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Letters, 2011, 11(11): 4764–4767
https://doi.org/10.1021/nl202578g pmid: 22011060
55 W Nan, Y Niu, H Qin, F Cui, Y Yang, R Lai, W Lin, X Peng. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. Journal of the American Chemical Society, 2012, 134(48): 19685–19693
https://doi.org/10.1021/ja306651x pmid: 23131103
56 H Qin, Y Niu, R Meng, X Lin, R Lai, W Fang, X Peng. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. Journal of the American Chemical Society, 2014, 136(1): 179–187
https://doi.org/10.1021/ja4078528 pmid: 24345247
57 Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149 pmid: 25086602
58 J Wang, N Wang, Y Jin, J Si, Z K Tan, H Du, L Cheng, X Dai, S Bai, H He, Z Ye, M L Lai, R H Friend, W Huang. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316
https://doi.org/10.1002/adma.201405217 pmid: 25708283
59 G Li, F W R Rivarola, N J L K Davis, S Bai, T C Jellicoe, F de la Peña, S Hou, C Ducati, F Gao, R H Friend, N C Greenham, Z K Tan. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534
https://doi.org/10.1002/adma.201600064 pmid: 26990965
60 N Wang, L Cheng, R Ge, S Zhang, Y Miao, W Zou, C Yi, Y Sun, Y Cao, R Yang, Y Wei, Q Guo, Y Ke, M Yu, Y Jin, Y Liu, Q Ding, D Di, L Yang, G Xing, H Tian, C Jin, F Gao, R H Friend, J Wang, W Huang. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
https://doi.org/10.1038/nphoton.2016.185
61 J Lim, M Park, W K Bae, D Lee, S Lee, C Lee, K Char. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 2013, 7(10): 9019–9026
https://doi.org/10.1021/nn403594j pmid: 24063589
62 M D Tessier, D Dupont, K D De Nolf, J D Roo, Z Hens. Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots. Chemistry of Materials, 2015, 27(13): 4893–4898
https://doi.org/10.1021/acs.chemmater.5b02138
63 J H Kim, H Yang. High-efficiency Cu–In–S quantum-dot-light-emitting device exceeding 7%. Chemistry of Materials, 2016, 28(17): 6329–6335
https://doi.org/10.1021/acs.chemmater.6b02669
64 Z Bai, W Ji, D Han, L Chen, B Chen, H Shen, B Zou, H Zhong. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chemistry of Materials, 2016, 28(4): 1085–1091
https://doi.org/10.1021/acs.chemmater.5b04480
65 A A Bol, A Meijerink. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202
https://doi.org/10.1021/jp0107560
66 H Shen, H Wang, X Li, J Z Niu, H Wang, X Chen, L S Li. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Transactions (Cambridge, England), 2009, (47): 10534–10540
https://doi.org/10.1039/b917674h pmid: 20023877
67 D Jurbergs, E Rogojina, L Mangolini, U Kortshagen. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88(23): 233116
https://doi.org/10.1063/1.2210788
68 K Y Cheng, R Anthony, U R Kortshagen, R J Holmes. High-efficiency silicon nanocrystal light-emitting devices. Nano Letters, 2011, 11(5): 1952–1956
https://doi.org/10.1021/nl2001692 pmid: 21462935
69 X Zhang, Y Zhang, Y Wang, S Kalytchuk, S V Kershaw, Y Wang, P Wang, T Zhang, Y Zhao, H Zhang, T Cui, Y Wang, J Zhao, W W Yu, A L Rogach. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano, 2013, 7(12): 11234–11241
https://doi.org/10.1021/nn405017q pmid: 24246067
70 F Yuan, Z Wang, X Li, Y Li, Z Tan, L Fan, S Yang. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Advanced Materials, 2017, 29(3): 1604436
https://doi.org/10.1002/adma.201604436 pmid: 27879013
71 J Song, J Li, X Li, L Xu, Y Dong, H Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167
https://doi.org/10.1002/adma.201502567 pmid: 26444873
72 T C Jellicoe, J M Richter, H F J Glass, M Tabachnyk, R Brady, S E Dutton, A Rao, R H Friend, D Credgington, N C Greenham, M L Böhm. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944
https://doi.org/10.1021/jacs.5b13470 pmid: 26901659
73 B Yang, J Chen, F Hong, X Mao, K Zheng, S Yang, Y Li, T Pullerits, W Deng, K Han. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56(41): 12471–12475
https://doi.org/10.1002/anie.201704739 pmid: 28796440
74 Q Chen, N De Marco, Y M Yang, T B Song, C C Chen, H Zhao, Z Hong, H Zhou, Y Yang. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355–396
https://doi.org/10.1016/j.nantod.2015.04.009
75 D Cortecchia, H A Dewi, J Yin, A Bruno, S Chen, T Baikie, P P Boix, M Grätzel, S Mhaisalkar, C Soci, N Mathews. Lead-free MA2CuClxBr4−x hybrid perovskites. Inorganic Chemistry, 2016, 55(3): 1044–1052
https://doi.org/10.1021/acs.inorgchem.5b01896 pmid: 26756860
76 K H Lee, J H Lee, H D Kang, B Park, Y Kwon, H Ko, C Lee, J Lee, H Yang. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano, 2014, 8(5): 4893–4901
https://doi.org/10.1021/nn500852g pmid: 24758609
77 P O Anikeeva, J E Halpert, M G Bawendi, V Bulović. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196–2200
https://doi.org/10.1021/nl0703424 pmid: 17616230
78 W K Bae, J Lim, D Lee, M Park, H Lee, J Kwak, K Char, C Lee, S Lee. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Advanced Materials, 2014, 26(37): 6387–6393
https://doi.org/10.1002/adma.201400139 pmid: 25155181
79 X Dai, Y Deng, X Peng, Y Jin. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022
https://doi.org/10.1002/adma.201607022 pmid: 28256780
80 J Li, L Xu, T Wang, J Song, J Chen, J Xue, Y Dong, B Cai, Q Shan, B Han, H Zeng. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885
https://doi.org/10.1002/adma.201603885 pmid: 27882606
81 X Dai, Z Zhang, Y Jin, Y Niu, H Cao, X Liang, L Chen, J Wang, X Peng. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96–99
https://doi.org/10.1038/nature13829 pmid: 25363773
82 J R Manders, L Qian, A Titov, J Hyvonen, J Tokarz-Scott, K P Acharya, Y Yang, W Cao, Y Zheng, J Xue, P H Holloway. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23(11): 523–528
https://doi.org/10.1002/jsid.393
83 H Shen, W Cao, N T Shewmon, C Yang, L S Li, J Xue. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Letters, 2015, 15(2): 1211–1216
https://doi.org/10.1021/nl504328f pmid: 25580801
84 Y Yang, Y Zheng, W Cao, A Titov, J Hyvonen, J R Manders, J Xue, P H Holloway, L Qian. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9(4): 259–266
85 M Gao, L Li, Y Song. Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(12): 2971–2993
https://doi.org/10.1039/C7TC00038C
86 X Liu, T J Tarn, F Huang, J Fan. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology, 2015, 19: 1–13
https://doi.org/10.1016/j.partic.2014.05.001
87 D Jang, D Kim, J Moon. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629–2635
https://doi.org/10.1021/la900059m pmid: 19437746
88 H M Liu, H Zheng, W Xu, J B Peng. Technology and development of ink-jet printing electroluminescence displays. Materials China, 2014, 33(3): 163–171
89 R D Deegan, O Bakajin, T F Dupont, G Huber, S R Nagel, T A Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
https://doi.org/10.1038/39827
90 P J Yunker, T Still, M A Lohr, A G Yodh. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476(7360): 308–311
https://doi.org/10.1038/nature10344 pmid: 21850105
91 D Soltman, V Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24(5): 2224–2231
https://doi.org/10.1021/la7026847 pmid: 18197714
92 H Hu, R G Larson. Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 2006, 110(14): 7090–7094
https://doi.org/10.1021/jp0609232 pmid: 16599468
93 D Kim, S Jeong, B K Park, J Moon. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters, 2006, 89(26): 264101
https://doi.org/10.1063/1.2424671
94 T Still, P J Yunker, A G Yodh. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 2012, 28(11): 4984–4988
https://doi.org/10.1021/la204928m pmid: 22369657
95 C Jiang, Z Zhong, B Liu, Z He, J Zou, L Wang, J Wang, J Peng, Y Cao. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Applied Materials & Interfaces, 2016, 8(39): 26162–26168
https://doi.org/10.1021/acsami.6b08679 pmid: 27608850
96 Z Cui. Printed Electronics: Materials, Technologies and Applications. Beijing: Higher Education Press, 2012 (in Chinese)
97 P Shin, J Sung. The effect of driving waveforms on droplet formation in a piezoelectric inkjet nozzle. In: Proceedings of Electronics Packaging Technology Conference, Singapore. IEEE, 2009, 158–162
98 K S Kwon, W Kim. A waveform design method for high-speed inkjet printing based on self-sensing measurement. Sensors and Actuators. A, Physical, 2007, 140(1): 75–83
https://doi.org/10.1016/j.sna.2007.06.010
99 P Shin, J Sung, M H Lee. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectronics and Reliability, 2011, 51(4): 797–804
https://doi.org/10.1016/j.microrel.2010.11.017
100 K S Kwon. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. Journal of Micromechanics and Microengineering, 2010, 20(11): 115005
https://doi.org/10.1088/0960-1317/20/11/115005
101 C Kim, M Nogi, K Suganuma, Y Yamato. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films. ACS Applied Materials & Interfaces, 2012, 4(4): 2168–2173
https://doi.org/10.1021/am300160s pmid: 22452572
102 P Q M Nguyen, L P Yeo, B K Lok, Y C Lam. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Applied Materials & Interfaces, 2014, 6(6): 4011–4016
https://doi.org/10.1021/am4054546 pmid: 24571607
103 A Mahajan, W J Hyun, S B Walker, G A Rojas, J H Choi, J A Lewis, L F Francis, C D Frisbie. A self-aligned strategy for printed electronics: exploiting capillary flow on microstructured plastic surfaces. Advanced Electronic Materials, 2015, 1(9): 1500137
https://doi.org/10.1002/aelm.201500137
104 K S Park, J Baek, Y Park, L Lee, Y E Lee, Y Kang, M M Sung. Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Advanced Materials, 2016, 28(15): 2874–2880
https://doi.org/10.1002/adma.201505594 pmid: 26891239
105 S F Wu, S H Li, Y K Wang, C C Huang, Q Sun, J J Liang, L S Liao, M K Fung. White organic LED with a luminous efficacy exceeding 100 lm·W−1 without light out-coupling enhancement techniques. Advanced Functional Materials, 2017, 27(31): 1701314
https://doi.org/10.1002/adfm.201701314
106 T Chiba, Y J Pu, J Kido. Solution-processed white phosphorescent tandem organic light-emitting devices. Advanced Materials, 2015, 27(32): 4681–4687
https://doi.org/10.1002/adma.201501866 pmid: 26212355
107 N C V D Vaart, H Lifka, F P M Budzelaar, J E J M Rubingh, J J L Hoppenbrouwers, J F Dijksman, R G F A Verbeek, R Woudenberg, F J Vossen, M G H Hiddink, J J W M Rosink, T N M Bernards, A Giraldo. 44.4: distinguished paper: towards large-area full-color active-matrix printed polymer OLED television. Sid Symposium Digest of Technical Papers, 2004, 35(1): 1284–1287
108 T R Hebner, C C Wu, D Marcy, M H Lu, J C Sturm. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998, 72(5): 519–521
https://doi.org/10.1063/1.120807
109 H Kobayashi, S Kanbe, S Seki, H Kigchi, M Kimura, I Yudasaka, S Miyashita, T Shimoda, C R Towns, J H Burroughes, R H Friend. A novel RGB multicolor light-emitting polymer display. Synthetic Metals, 2000, 111–112: 125–128
https://doi.org/10.1016/S0379-6779(99)00322-7
110 P C Duineveld, M M de Kok, M Buechel, A Sempel, K A H Mutsaers, P van de Weijer, I G J Camps, T van de Biggelaar, J E J M Rubingh, E I Haskal. Ink-jet printing of polymer light-emitting devices. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4464: 59–67
https://doi.org/10.1117/12.457460
111 M Fleuster, M Klein, P Roosmalen, A Wit, H Schwab. 44.2: Mass manufacturing of full color passive-matrix and active-matrix PLED displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1276–1279
112 R Gupta, A Ingle, S Natarajan, F So. 44.3: Ink jet printed organic displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1281–1283
113 J Rhee, J Wang, S Cha, J Chung, D Lee, S Hong, B Choi, J Goh, K Jung, S Kim, C Ko, B Koh, S Sung, K Park, N Kim, K Chung, H Gregory, M Bale, C Creighton, B Wild, A Shawcross, L Webb, M Hatcher, R Lees, M Richardson, O Bassett, S Coats, J Jongman, S Goddard, P Lyon, C Murphy, P Wallace, J Carte, N Athanassopoulou. P-177: a 14.1-in. full-color polymer-LED display with a-Si TFT backplane by ink-jet printing. SID Symposium Digest of Technical Papers, 2006, 37(1): 895–897
114 T Gohda, Y Kobayashi, K Okano, S Inoue, K Okamoto, S Hashimoto, E Yamamoto, H Morita, S Mitsui, M Koden. 58.3: a 3.6-in. 202-ppi full-color AMPLED display fabricated by ink-jet method. SID Symposium Digest of Technical Papers, 2006, 37(1): 1767–1770
115 S Takei, A Kitabayashi, H Hanaoka, K Shinohara, M Goto, T Nozawa, T Kubota, T Kasai, S Sakai, S Miyashita. P-186L: late-news poster: fabrication of completely uniform OLED display using an improved inkjet method. SID Symposium Digest of Technical Papers, 2009, 40(1): 1351–1354
116 H Zheng, Y Zheng, N Liu, N Ai, Q Wang, S Wu, J Zhou, D Hu, S Yu, S Han, W Xu, C Luo, Y Meng, Z Jiang, Y Chen, D Li, F Huang, J Wang, J Peng, Y Cao. All-solution processed polymer light-emitting diode displays. Nature Communications, 2013, 4(3): 1971
pmid: 23736123
117 C Chen, Y Chung, C Chen, P Y Chen, C H Lee, L I Cheng, L Tsai, H C Ting, L F Lin, C C Chen, T H Shih, C Y Chen, L H Chang, Y Lin. 55.2: ink-jet printed AMOLED displays based on high mobility IGZO TFTs: cost does matter! Sid Symposium Digest of Technical Papers, 2014, 44(1):760–762
118 P Y Chen, C L Chen, C C Chen, L Tsai, H C Ting, L F Lin, C C Chen, C Y Chen, L H Chang, T H Shih, Y H Chen, J C Huang, M Y Lai, C M Hsu, Y Lin. 30.1: invited paper: 65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformity. SID Symposium Digest of Technical Papers, 2014, 45(1): 396–398
119 JOLED Inc. 世界初の印刷方式4K有機ELパネル、サンプル出荷を開始! (2017/5/17)
120 S Olivier, L Derue, B Geffroy, E Ishow, T Maindron. Inkjet printing of photopolymerizable small molecules for OLED applications. In: Proceedings of Organic Light Emitting Materials and Devices XIX. International Society for Optics and Photonics, 2015, 9566: 95661N
121 H M Haverinen, R A Myllylä, G E Jabbour. Inkjet printed RGB quantum dot-hybrid LED. Journal of Display Technology, 2010, 6(3): 87–89
https://doi.org/10.1109/JDT.2009.2039019
122 T H Kim, K S Cho, E K Lee, S J Lee, J Chae, J W Kim, D H Kim, J Y Kwon, G Amaratunga, S Y Lee, B L Choi, Y Kuk, J M Kim, K Kim. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176–182
https://doi.org/10.1038/nphoton.2011.12
123 B H Kim, M S Onses, J B Lim, S Nam, N Oh, H Kim, K J Yu, J W Lee, J H Kim, S K Kang, C H Lee, J Lee, J H Shin, N H Kim, C Leal, M Shim, J A Rogers. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 2015, 15(2): 969–973
https://doi.org/10.1021/nl503779e pmid: 25584701
124 J Han, D Ko, M Park, J Roh, H Jung, Y Lee, Y Kwon, J Sohn, W K Bae, B D Chin, C Lee. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. Journal of the Society for Information Display, 2016, 24(9): 545–551
https://doi.org/10.1002/jsid.467
125 Y Liu, F Li, X Xie, W Chen, Z Xu, C Zheng, H Hu, T Guo. P-122: red and green quantum dots light-emitting diodes fabricated by inkjet printing. Sid Symposium Digest of Technical Papers, 2017, 48(1): 1715–1718
126 C Jiang, L Mu, J Zou, Z He, Z Zhong, L WangXu Miao, , J Wang, J Peng, Y. CaoFull-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, https://doi.org/10.1007/s11426-017-9087-y
127 S Xia, K O Cheon, J J Brooks, M Rothman, T Ngo, P Hett, R C Kwong, M Inbasekaran, J J Brown, T Sonoyama, M Ito, S Seki, S Miyashita. Printable phosphorescent organic light-emitting devices. Journal of the Society for Information Display, 2009, 17(2): 167–172
https://doi.org/10.1889/JSID17.2.167
128 P Chen, C Chen, C Hsieh, J M Lin, Y S Lin, Y Lin. P-56: High resolution organic light-emitting diode panel fabricated by ink jet printing process. Sid Symposium Digest of Technical Papers, 2015, 46(1):1352–1354
129 S Sax, N Rugen-Penkalla, A Neuhold, S Schuh, E Zojer, E J W List, K Müllen. Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Advanced Materials, 2010, 22(18): 2087–2091
https://doi.org/10.1002/adma.200903076 pmid: 20544896
130 D G D Patel, K R Graham, J R Reynolds. A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22(7): 3004–3014
https://doi.org/10.1039/c2jm14591j
131 J S Kim, P K H Ho, C E Murphy, R H Friend. Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules, 2004, 37(8): 2861–2871
https://doi.org/10.1021/ma035750i
132 Y Xia, R H Friend. Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules, 2005, 38(15): 6466–6471
https://doi.org/10.1021/ma0503413
133 S C Chang, J Liu, J Bharathan, Y Yang, H Onohara, J Kido. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Advanced Materials, 1999, 11(9): 734–737
https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<734::AID-ADMA734>3.0.CO;2-D
134 H Gorter, M J J Coenen, M W L Slaats, M Ren, W Lu, C J Kuijpers, W A Groen. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films, 2013, 532: 11–15
https://doi.org/10.1016/j.tsf.2013.01.041
135 Z Ding, R Xing, Q Fu, D Ma, Y Han. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12(4): 703–709
https://doi.org/10.1016/j.orgel.2011.01.027
136 S Coe, W K Woo, M Bawendi, V Bulović. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803
https://doi.org/10.1038/nature01217 pmid: 12490945
137 H H Kim, S Park, Y Yi, D I Son, C Park, D K Hwang, W K Choi. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Scientific Reports, 2015, 5: 8968
https://doi.org/?10.1038/srep08968
138 O S Kim, B H Kang, J S Lee, S W Lee, S H Cha, J W Lee, S W Kim, S H Kim, S W Kang. Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport. IEEE Electron Device Letters, 2016, 37(8): 1022–1024
https://doi.org/10.1109/LED.2016.2578304
139 F Liang, Y Liu, Y Hu, Y L Shi, Y Q Liu, Z K Wang, X D Wang, B Q Sun, L S Liao. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes. ACS Applied Materials & Interfaces, 2017, 9(23): 20239–20246
https://doi.org/10.1021/acsami.7b05629 pmid: 28541652
140 L Kim, P O Anikeeva, S A Coe-Sullivan, J S Steckel, M G Bawendi, V Bulović. Contact printing of quantum dot light-emitting devices. Nano Letters, 2008, 8(12): 4513–4517
https://doi.org/10.1021/nl8025218 pmid: 19053797
141 B H Kim, S Nam, N Oh, S Y Cho, K J Yu, C H Lee, J Zhang, K Deshpande, P Trefonas, J H Kim, J Lee, J H Shin, Y Yu, J B Lim, S M Won, Y K Cho, N H Kim, K J Seo, H Lee, T I Kim, M Shim, J A Rogers. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 2016, 10(5): 4920–4925
https://doi.org/10.1021/acsnano.5b06387 pmid: 27078621
142 M K Choi, J Yang, K Kang, D C Kim, C Choi, C Park, S J Kim, S I Chae, T H Kim, J H Kim, T Hyeon, D H Kim. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6: 7149
https://doi.org/10.1038/ncomms8149 pmid: 25971194
143 D Roy, M Munz, P Colombi, S Bhattacharyya, J P Salvetat, P J Cumpson, M L Saboungi. Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Applied Surface Science, 2007, 254(5): 1394–1398
https://doi.org/10.1016/j.apsusc.2007.06.058
144 A Gokarna, S K Lee, J S Hwang, Y H Cho, Y T Lim, B H Chung, M Lee. Fabrication of CdSe/ZnS quantum-dot-conjugated protein microarrays and nanoarrays. Journal of the Korean Physical Society, 2008, 53(925): 3047–3050
https://doi.org/10.3938/jkps.53.3047
145 J S Park, J Kyhm, H H Kim, S Jeong, J Kang, S E Lee, K T Lee, K Park, N Barange, J Han, J D Song, W K Choi, I K Han. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Letters, 2016, 16(11): 6946–6953
https://doi.org/10.1021/acs.nanolett.6b03007 pmid: 27733041
146 H M Haverinen, R A Myllylä, G E Jabbour. Inkjet printing of light emitting quantum dots. Applied Physics Letters, 2009, 94(7): 073108
https://doi.org/10.1063/1.3085771
[1] Liping ZHU,Kai XU,Yanping WANG,Jiangshan CHEN,Dongge MA. High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex[J]. Front. Optoelectron., 2015, 8(4): 439-444.
[2] Jinzhao HUANG, Minghui SHAO, Xijin XU. Transient and stable electroluminescence properties of alternating-current biased organic light-emitting diodes[J]. Front Optoelec, 2012, 5(3): 279-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed