|
|
|
On-chip silicon polarization and mode handling devices |
Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU( ) |
| State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
|
|
Abstract Mode- and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications. On-chip silicon polarization and mode handling devices are key components in integrated mode- and polarization-division multiplexed photonic circuits. In this paper, we review our recent progresses on silicon-based polarization beam splitters, polarization splitters and rotators, mode (de)multiplexers, and mode and polarization selective switches. Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio, compact footprint and high fabrication tolerance. For on-chip mode multiplexing, we introduce a low loss and fabrication tolerant three-mode (de)multiplexer employing sub-wavelength grating structure. In analogy to a conventional wavelength selective switch in wavelength-division multiplexing, we demonstrate a selective switch that can route mode- and polarization-multiplexed signals.
|
| Keywords
silicon photonics
polarization beam splitter
polarization splitter and rotator
mode (de)multiplexer
selective switch
|
|
Corresponding Author(s):
Yikai SU
|
|
Online First Date: 28 March 2018
Issue Date: 02 April 2018
|
|
| 1 |
Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
|
| 2 |
Winzer P J. Making spatial multiplexing a reality. Nature Photonics, 2014, 8(5): 345–348
https://doi.org/10.1038/nphoton.2014.58
|
| 3 |
Ding Y, Kamchevska V, Dalgaard K, Ye F, Asif R, Gross S, Withford M J, Galili M, Morioka T, Oxenløwe L K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Scientific Reports, 2016, 6(1): 39058
https://doi.org/10.1038/srep39058
pmid: 28000735
|
| 4 |
Bai N, Ip E, Huang Y K, Mateo E, Yaman F, Li M J, Bickham S, Ten S, Liñares J, Montero C, Moreno V, Prieto X, Tse V, Man Chung K, Lau A P T, Tam H Y, Lu C, Luo Y, Peng G D, Li G, Wang T. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Optics Express, 2012, 20(3): 2668–2680
https://doi.org/10.1364/OE.20.002668
pmid: 22330504
|
| 5 |
Ryf R, Randel S, Fontaine N K, Montoliu M, Burrows E, Chandrasekhar S, Gnauck A H, Xie C, Essiambre R J, Winzer P, Delbue R, Pupalaikis P, Sureka A, Sun Y, Gruner-Nielsen L, Jensen R V, Lingle R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5A.1
|
| 6 |
Thylén L, Wosinski L. Integrated photonics in the 21st century. Photonics Research, 2014, 2(2): 75–81
https://doi.org/10.1364/PRJ.2.000075
|
| 7 |
Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6
https://doi.org/10.1007/s12633-010-9034-y
|
| 8 |
Gondarenko A, Levy J S, Lipson M. High confinement micron-scale silicon nitride high Q ring resonator. Optics Express, 2009, 17(14): 11366–11370
https://doi.org/10.1364/OE.17.011366
pmid: 19582051
|
| 9 |
Chen P, Zhu Y, Shi Y, Dai D, He S. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices. Optics Express, 2012, 20(20): 22531–22536
https://doi.org/10.1364/OE.20.022531
pmid: 23037402
|
| 10 |
Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
|
| 11 |
de Rossi A, Lauritano M, Combrié S, Tran Q V, Husko C. Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity. Physical Review A, 2009, 79(4): 043818
https://doi.org/10.1103/PhysRevA.79.043818
|
| 12 |
Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M. Integrated high quality factor lithium niobate microdisk resonators. Optics Express, 2014, 22(25): 30924–30933
https://doi.org/10.1364/OE.22.030924
pmid: 25607041
|
| 13 |
Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M. Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003
https://doi.org/10.1088/2040-8978/18/7/073003
|
| 14 |
Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
https://doi.org/10.1364/OL.35.000679
pmid: 20195317
|
| 15 |
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
https://doi.org/10.1038/nphoton.2014.321
|
| 16 |
Zhang Y, Zeng C, Li D, Zhao X, Gao G, Yu J, Xia J. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Optics Express, 2014, 22(10): 12248–12254
https://doi.org/10.1364/OE.22.012248
pmid: 24921343
|
| 17 |
Zhang Y, Zeng C, Zhang H, Li D, Gao G, Huang Q, Wang Y, Yu J, Xia J. Single-mode emission from Ge quantum dots in photonic crystal nanobeam cavity. IEEE Photonics Technology Letters, 2015, 27(9): 1026–1029
https://doi.org/10.1109/LPT.2015.2405555
|
| 18 |
Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Optics Express, 2012, 20(14): 15093–15099
https://doi.org/10.1364/OE.20.015093
pmid: 22772206
|
| 19 |
Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
https://doi.org/10.1364/OE.24.009295
pmid: 27137545
|
| 20 |
Liu B, Zhang Y, He Y, Jiang X, Peng J, Qiu C, Su Y. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Optics Express, 2017, 25(10): 11359–11364
https://doi.org/10.1364/OE.25.011359
pmid: 28788818
|
| 21 |
Jiang X, Wu J, Yang Y, Pan T, Mao J, Liu B, Liu R, Zhang Y, Qiu C, Tremblay C, Su Y. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Optics Express, 2016, 24(3): 2183–2188
https://doi.org/10.1364/OE.24.002183
pmid: 26906794
|
| 22 |
Jiang X, Yang Y, Zhang H, Peng J, Zhang Y, Qiu C, Su Y. Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range. Journal of Lightwave Technology, 2017, 35(17): 3765–3771
https://doi.org/10.1109/JLT.2017.2720188
|
| 23 |
Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373
https://doi.org/10.1364/OL.39.001370
pmid: 24690790
|
| 24 |
Chen G, Yu Y, Deng S, Liu L, Zhang X. Bandwidth improvement for germanium photodetector using wire bonding technology. Optics Express, 2015, 23(20): 25700–25706
https://doi.org/10.1364/OE.23.025700
pmid: 26480085
|
| 25 |
Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
https://doi.org/10.1002/lpor.201300157
|
| 26 |
Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
https://doi.org/10.1038/lsa.2012.1
|
| 27 |
Doerr C R, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu X M, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2014, Th5C.1
|
| 28 |
Dong P, Liu X, Sethumadhavan C, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5C.6
|
| 29 |
Rahman B, Somasiri N, Themistos C, Grattan K. Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, Lasers and Optics, 2001, 73(5–6): 613–618
https://doi.org/10.1007/s003400100680
|
| 30 |
Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
https://doi.org/10.1364/OL.38.001227
pmid: 23595439
|
| 31 |
Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
https://doi.org/10.1063/1.2360201
|
| 32 |
Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Optics Letters, 2007, 32(12): 1662–1664
https://doi.org/10.1364/OL.32.001662
pmid: 17572739
|
| 33 |
Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
https://doi.org/10.1063/1.3437088
|
| 34 |
Guan X, Wu H, Shi Y, Dai D. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262
https://doi.org/10.1364/OL.39.000259
pmid: 24562121
|
| 35 |
Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
https://doi.org/10.1364/OE.14.012401
pmid: 19529672
|
| 36 |
Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
https://doi.org/10.1364/OE.19.018614
pmid: 21935230
|
| 37 |
Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 2016, 24(6): 6586–6593
https://doi.org/10.1364/OE.24.006586
pmid: 27136848
|
| 38 |
Kim D W, Lee M H, Kim Y, Kim K H. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Optics Express, 2015, 23(2): 998–1004
https://doi.org/10.1364/OE.23.000998
pmid: 25835859
|
| 39 |
Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X. Compact polarization splitter based on silicon grating-assisted couplers. Optics Letters, 2015, 40(9): 1885–1887
https://doi.org/10.1364/OL.40.001885
pmid: 25927739
|
| 40 |
Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y. Ultra-compact broadband silicon polarization beam splitter based on a bridged bent directional coupler. In: Proceedings of IEEE 13th International Conference on Group IV Photonics (GFP). IEEE Photonics Society, 2016, ThP18
|
| 41 |
Liu L, Ding Y, Yvind K, Hvam J M. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36(7): 1059–1061
https://doi.org/10.1364/OL.36.001059
pmid: 21478982
|
| 42 |
Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
https://doi.org/10.1364/OE.19.012646
pmid: 21716506
|
| 43 |
Tan K, Huang Y, Lo G Q, Yu C, Lee C. Ultra-broadband fabrication-tolerant polarization splitter and rotator. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.7
|
| 44 |
Wang J, Niu B, Sheng Z, Wu A, Li W, Wang X, Zou S, Qi M, Gan F. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Optics Express, 2014, 22(11): 13565–13571
https://doi.org/10.1364/OE.22.013565
pmid: 24921550
|
| 45 |
Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref R A. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1(9): 091304
https://doi.org/10.1063/1.4965832
|
| 46 |
He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.6
|
| 47 |
Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
https://doi.org/10.1364/OE.20.020021
pmid: 23037055
|
| 48 |
Xiong Y, Xu D X, Schmid J H, Cheben P, Janz S, Ye W N. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Optics Express, 2014, 22(14): 17458–17465
https://doi.org/10.1364/OE.22.017458
pmid: 25090559
|
| 49 |
Halir R, Bock P J, Cheben P, Ortega-Moñux A, Alonso-Ramos C, Schmid J H, Lapointe J, Xu D X, Wangüemert‐Pérez J G, Molina-Fernández Í, Janz S. Waveguide sub-wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 2015, 9(1): 25–49
https://doi.org/10.1002/lpor.201400083
|
| 50 |
Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
https://doi.org/10.1364/OL.38.003468
pmid: 23988986
|
| 51 |
Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Applied Optics, 2012, 51(15): 2778–2783
https://doi.org/10.1364/AO.51.002778
pmid: 22614579
|
| 52 |
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
https://doi.org/10.1364/OL.38.001422
pmid: 23632505
|
| 53 |
Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 2014, 5: 3069
pmid: 24423882
|
| 54 |
He Y, Zhang Y, Jiang X, Qiu C, Su Y. On-chip silicon three-mode (de)multiplexer employing subwavelength grating structure. In: Proceedings of 43nd European Conference on Optical Communication . ECOC, 2017, W2C.3
|
| 55 |
Doerr C R, Buhl L, Chen L, Dupuis N. Monolithic gridless 1 ´ 2 wavelength-selective switch in silicon. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2011, PDPC4
|
| 56 |
Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M. On-chip mode-division multiplexing switch. Optica, 2015, 2(6): 530–535
https://doi.org/10.1364/OPTICA.2.000530
|
| 57 |
Zhang Y, Zhu Q, He Y, Qiu C, Su Y, Soref R. Silicon 1 × 2 mode- and polarization-selective switch. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, W4E.2
|
| 58 |
Winzer P, Gnauck A, Konczykowska A, Jorge F, Dupuy J Y. Penalties from in-band crosstalk for advanced optical modulation formats. In: Proceedings of 37th European Conference and Exposition on Optical Communications. ECOC, 2011, Tu.5.B.7
|
| 59 |
Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
https://doi.org/10.1364/OE.21.010376
pmid: 23609748
|
| 60 |
Downie J D, Ruffin A B. Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. Journal of Lightwave Technology, 2003, 21(9): 1876–1886
https://doi.org/10.1109/JLT.2003.815499
|
| 61 |
Poon A W, Luo X, Xu F, Chen H. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proceedings of the IEEE, 2009, 97(7): 1216–1238
https://doi.org/10.1109/JPROC.2009.2014884
|
| 62 |
Zhang Y, He Y, Zhu Q, Qiu C, Su Y. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Research, 2017, 5(5): 521–526
https://doi.org/10.1364/PRJ.5.000521
|
| 63 |
Fang Q, Song J F, Liow T Y, Cai H, Yu M B, Lo G Q, Kwong D L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technology Letters, 2011, 23(8): 525–527
https://doi.org/10.1109/LPT.2011.2114336
|
| 64 |
Zhu Q M, Zhang Y, He Y, An S H, Qiu C Y, Guo X H, Su Y K. On-chip switching of mode- and polarization-multiplexed signals with a 748-Gb/s/λ (8×93.5-Gb/s) capacity. In: Proceedings of CLEO, 2018, accepted
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|