Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (3) : 256-260    https://doi.org/10.1007/s12200-018-0805-1
RESEARCH ARTICLE
Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy
Chenghong WU, Xinyang MIAO, Kun ZHAO()
Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
 Download: PDF(1283 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Particulate matter with the diameter of less than 2.5 mm (PM2.5) is the most important causation of air pollution. In this study, PM2.5 samples were collected in three different environment including ordinary atmospheric environment, lampblack environment and the environment with an air conditioning exhaust fan, and analyzed by using terahertz time-domain spectroscopy (THz-TDS). The linear regression analysis and the principal component analysis (PCA) are used to identify PM2.5 samples collected in different environment. The results indicate that combining THz-TDS with statistical methods can serve as a contactless and efficient approach to identify air pollutants in different environment.

Keywords PM2.5      terahertz time-domain spectroscopy (THz-TDS)      statistical methods     
Corresponding Author(s): Kun ZHAO   
Just Accepted Date: 18 May 2018   Online First Date: 21 June 2018    Issue Date: 31 August 2018
 Cite this article:   
Chenghong WU,Xinyang MIAO,Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0805-1
https://academic.hep.com.cn/foe/EN/Y2018/V11/I3/256
Fig.1  PM2.5 samples collected in different environment. (a) Ordinary atmospheric environment; (b) lampblack environment; (c) environment with an air conditioning exhaust fan; (d) blank filter
Fig.2  THz-TDS of samples and air
Fig.3  PM2.5 mass dependent the degree of attenuation
Fig.4  Frequency dependence of the absorbance spectra for PM2.5 samples collected in three different environment
Fig.5  Two-dimensional system of PC1 versus PC2 plot calculated by PC
1 Querol X, Alastuey A, Ruiz C R, Artinano B, Hansson H C, Harrison R M, Buringh E, ten Brink H M, Lutz M, Bruckmann P, Straehl P, Schneider J. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 2004, 38(38): 6547–6555
https://doi.org/10.1016/j.atmosenv.2004.08.037
2 Nel A. Air pollution-related illness: effects of particles. Science, 2005, 308(5723): 804–806
https://doi.org/10.1126/science.1108752 pmid: 15879201
3 Yuan Y, Liu S, Castro R, Pan X. PM2.5 monitoring and mitigation in the cities of China. Environmental Science & Technology, 2012, 46(7): 3627–3628
https://doi.org/10.1021/es300984j pmid: 22448594
4 Pui D Y H, Chen S C, Zuo Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology, 2014, 13(2): 1–26
https://doi.org/10.1016/j.partic.2013.11.001
5 Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez V B, Bhatti P, Karr C. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environmental Research, 2015, 136: 505–512
https://doi.org/10.1016/j.envres.2014.10.030 pmid: 25460673
6 Brook R D, Rajagopalan S, Pope C A 3rd, Brook J R, Bhatnagar A, Diez-Roux A V, Holguin F, Hong Y, Luepker R V, Mittleman M A, Peters A, Siscovick D, Smith S C Jr, Whitsel L, Kaufman J D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 2010, 121(21): 2331–2378
https://doi.org/10.1161/CIR.0b013e3181dbece1 pmid: 20458016
7 Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222
https://doi.org/10.1038/nature13774 pmid: 25231863
8 Qiao L, Cai J, Wang H, Wang W, Zhou M, Lou S, Chen R, Dai H, Chen C, Kan H. PM2.5 constituents and hospital emergency-room visits in Shanghai, China. Environmental Science & Technology, 2014, 48(17): 10406–10414
https://doi.org/10.1021/es501305k pmid: 25119795
9 Wei Y, Han I K, Shao M, Hu M, Zhang O J, Tang X. PM2.5 constituents and oxidative DNA damage in humans. Environmental Science & Technology, 2009, 43(13): 4757–4762
https://doi.org/10.1021/es803337c pmid: 19673262
10 Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yang F, Lu Y, Wang W. Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 2016, 541: 590–598
https://doi.org/10.1016/j.scitotenv.2015.09.123 pmid: 26433327
11 Zhan H, Wu S, Zhao K, Bao R, Xiao L. CaCO3, its reaction and carbonate rocks: Terahertz spectroscopy investigation. Journal of Geophysics and Engineering, 2016, 13(5): 768–774
https://doi.org/10.1088/1742-2132/13/5/768
12 Bao R M, Li Y Z, Zhan H L, Zhao K, Wang W, Ma Y, Wu J X, Liu S H, Li S Y, Xiao L Z. Probing the oil content in oil shale with terahertz spectroscopy. Science China Physics, Mechanics & Astronomy, 2015, 58(11): 114211
https://doi.org/10.1007/s11433-015-5731-2
13 Bao R M, Miao X Y, Feng C J, Zhang Y Z, Zhan H L, Zhao K, Wang M R, Yao J Q. Characterizing the oil and water distribution in low permeability core by reconstruction of terahertz images. Science China Physics, Mechanics & Astronomy, 2016, 59(6): 664201
https://doi.org/10.1007/s11433-016-5792-x
14 Zhan H L, Li N, Zhao K, Zhang Z W, Zhang C L, Bao R M. Terahertz assessment of the atmospheric pollution during the first-ever red alert period in Beijing. Science China Physics, Mechanics & Astronomy, 2017, 60(4): 044221
https://doi.org/10.1007/s11433-016-0469-4
15 Zhan H, Li Q, Zhao K, Zhang L, Zhang Z, Zhang C, Xiao L. Evaluating PM2.5 at a construction site using terahertz radiation. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1028–1034
https://doi.org/10.1109/TTHZ.2015.2477596
16 Zhan H, Zhao K, Bao R, Xiao L. Monitoring PM2.5 in the atmosphere by using terahertz time-domain spectroscopy. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(9): 929–938
https://doi.org/10.1007/s10762-016-0283-8
17 Zhan H L, Zhao K, Xiao L Z. Non-contacting characterization of PM2.5 in dusty environment with THz-TDS. Science China Physics, Mechanics & Astronomy, 2016, 59(4): 644201
https://doi.org/10.1007/s11433-015-5762-8
18 Li Q, Zhao K, Zhang L W, Liang C, Zhang Z W, Zhang C L, Han D H. Probing PM2.5 with terahertz wave. Science China P hysics, Mechanics & Astronomy, 2014, 57(12): 2354–2356
https://doi.org/10.1007/s11433-014-5569-z
19 Bao R M, Zhan H L, Miao X Y, Zhao K, Feng C J, Dong C, Li Y Z, Xiao L Z. Terahertz-dependent identification of simulated hole shapes in oil gas reservoirs. Chinese Physics B, 2016, 25(10): 100204
https://doi.org/10.1088/1674-1056/25/10/100204
[1] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[2] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[3] Honglei ZHAN,Fangli QIN,Wujun JIN,Li’na GE,Honglan LIU,Kun ZHAO. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
[4] Hui ZHAO, Kun ZHAO, Lu TIAN, Qing MIAO, Hao NI. Optical property of biodiesel and its base stock in terahertz region[J]. Front Optoelec, 2012, 5(2): 214-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed