Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 348-359    https://doi.org/10.1007/s12200-018-0842-9
RESEARCH ARTICLE
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells
Jikang LIU, Junli LI, Guoli TU()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(652 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-C61-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester (C60-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/C60-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the C60-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th:PC71BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives C60-2EPM was also used as a third compound in P3HT:PC61BM blend to form ternary system, the devices with addition of C60-2EPM exhibited better values than the control device.

Keywords interface compatibility      functionalized fullerene derivatives      tune energy alignment      third compound      ternary system     
Corresponding Author(s): Guoli TU   
Just Accepted Date: 24 October 2018   Online First Date: 14 December 2018    Issue Date: 21 December 2018
 Cite this article:   
Jikang LIU,Junli LI,Guoli TU. Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells[J]. Front. Optoelectron., 2018, 11(4): 348-359.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0842-9
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/348
Fig.1  Device architecture of the inverted organic solar cells and molecular structures of C60-2EPM, PC71BM and PTB7-Th
Fig.2  Scheme 1 Synthetic scheme of C60-2EPM
Fig.3  (a) O 1s, (b) C 1s spectra of ZnO and ZnO/C60-2EPM and (c) atomic concentrations of carbon, oxygen and zinc based on the corresponding XPS spectra
Buffer layer Eg HOMO (UPS) LUMO (Eg)
ZnO 3.10 -7.75 -4.65
ZnO/C60-2EPM 3.02 -7.06 -4.04
Tab.1  Energy levels of ZnO and ZnO/C60-2EPM
ETLs active layer Voc/V Jsc/(mA·cm−2) FF/% PCE/%
ITO P3HT:PC61BM 0.39 8.83 37.70 1.30
ITO/C60-2EPM (2.0) P3HT:PC61BM 0.49 11.92 36.14 2.12
ITO/C60-2EPM (4.0) P3HT:PC61BM 0.49 12.32 39.16 2.37
ZnO PTB7-Th:PC71BM 0.78 16.72 62.36 8.11
ZnO/C60-2EPM (2.0) PTB7-Th:PC71BM 0.78 16.79 63.82 8.38
ZnO/C60-2EPM (4.0) PTB7-Th:PC71BM 0.78 16.94 65.14 8.65
Tab.2  Device parameters of the inverted polymer solar cell with the structure of ITO/ETLs/active layer/MoO3/Al with and without the fullerene derivatives as interface layers based on the blend system of P3HT:PC61BM and PTB7-Th:PC71BM under the illumination of AM 1.5 G, illumination at 100 mW/cm2
Fig.4  J–V characteristics and dark current of the inverted polymer solar cell with different structure of (a)ITO/ fullerene derivatives (x)/P3HT:PC61BM/MoO3/Al; (b) ITO/ZnO/fullerene derivatives (x)/PTB7-Th:PC71BM /MoO3/Al; (c) ITO/fullerene derivatives (x)/P3HT:PC61BM/MoO3/Al; (d) ITO/ZnO/fullerene derivatives (x)/PTB7-Th:PC71BM/MoO3/Al (x = 2.0, 4.0 mg/mL)
additive ratio/wt% Voc/V Jsc/(mA·cm−2) FF/% PCE/%
0 0.59 11.62 50.91 3.49
C60-2EPM 5 0.58 11.53 54.35 3.64
C60-2EPM 10 0.58 12.57 52.84 3.84
C60-2EPM 15 0.58 12.32 54.15 3.87
C60-2EPM 20 0.58 12.52 52.06 3.76
Tab.3  Photovoltaic parameters of the ternary inverted OSCs with the structure of ITO/ZnO/P3HT:PC61BM:C60-2EPM(x)/MoO3/Al
Fig.5  (a) J–V characteristics; (b) dark current of the inverted polymer solar cell with structure of ITO/ZnO/ P3HT:PC61BM:C60-2EPM (x = 0, 5%, 10%, 15% and 20%)
  Fig. S11H NMR spectrums of 2EPM
  Fig. S21H NMR spectrums of C60-2EPM
  Fig. S3 UV-vis absorption spectrum of the PC61BA, 2EPM and C60-2EPM
  Fig. S4 XPS spectra of all atomics of ZnO and ZnO/C60-2EPM
  Fig. S5 UPS spectra of ZnO and ZnO/C60-2EPM
  Fig. S6 UV-vis absorption spectrum of (a) ZnO and ZnO/C60-2EPM; (b) the devices with the structure of ITO/ZnO/P3HT:PC61BM:C60-2EPM (x = 0, 5%, 10%, 15% and 20%)
  Fig. S7 Surface topography AFM images (5 μm ´ 5 μm) of the devices. (a) ITO/ZnO/; (b) ITO/ZnO/C60-2EPM (2.0 mg/mL); (c) ITO/ZnO/C60-2EPM (4.0 mg/mL)
  Fig. S8 Surface topography AFM images (5 μm ´ 5 μm ) of devices with the structure of ITO/ZnO/P3HT:PC61BM with addition of C60-2EPM. (a) 0%; (b) 5% C60-2EPM; (c) 10% C60-2EPM; (d) 15% C60-2EPM; (e) 20% C60-2EPM
1 WDeng, K Gao, JYan, QLiang, YXie, Z He, HWu, XPeng, Y Cao. Origin of reduced open-circuit voltage in highly efficient small-molecule-based solar cells upon solvent vapor annealing. ACS Applied Materials & Interfaces, 2018, 10(9): 8141–8147
https://doi.org/10.1021/acsami.7b17546 pmid: 29411601
2 S HLiao, H J Jhuo, Y S Cheng, V Gupta, S AChen. A high performance inverted organic solar cell with a low band gap small molecule (p-DTS(FBTTh2)2) using a fullerene derivative-doped zinc oxide nano-film modified with a fullerene-based self-assembled monolayer as the cathode. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(45): 22599–22604
https://doi.org/10.1039/C5TA05216E
3 VPapamakarios, E Polydorou, ASoultati, NDroseros, DTsikritzis, A MDouvas, LPalilis, MFakis, SKennou, PArgitis, MVasilopoulou. Surface modification of ZnO layers via hydrogen plasma treatment for efficient inverted polymer solar cells. ACS Applied Materials & Interfaces, 2016, 8(2): 1194–1205
https://doi.org/10.1021/acsami.5b09533 pmid: 26696337
4 S PSingh, C H P Kumar, P Nagarjuna, JKandhadi, LGiribabu, MChandrasekharam, SBiswas, G DSharma. Efficient solution processable polymer solar cells using newly designed and synthesized fullerene derivatives. Journal of Physical Chemistry C, 2016, 120(35): 19493–19503
https://doi.org/10.1021/acs.jpcc.6b03124
5 YWu, Y Zou, HYang, YLi, H Li, CCui, YLi. Achieving over 9.8% efficiency in nonfullerene polymer solar cells by environmentally friendly solvent processing. ACS Applied Materials & Interfaces, 2017, 9(42): 37078–37086
https://doi.org/10.1021/acsami.7b11488 pmid: 28960054
6 F,Zhao S,Dai Y,Wu Q, Zhang J,Wang L,Jiang Q,Ling Z,Wei W, Ma W,You C,Wang X.ZhanSingle-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Advanced Materials, 2017, 29(18): 1700144 doi:10.1002/adma.201700144
7 WZhao, S Li, HYao, SZhang, YZhang, BYang, J Hou. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151
https://doi.org/10.1021/jacs.7b02677 pmid: 28513158
8 NChakravarthi, K Gunasekar, WCho, D XLong, Y HKim, C ESong, J CLee, AFacchetti, MSong, Y Y Noh, S H Jin. A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy & Environmental Science, 2016, 9(8): 2595–2602
https://doi.org/10.1039/C6EE00292G
9 ZGeorge, Y Xia, ASharma, CLindqvist, GAndersson, OInganäs, EMoons, CMüller, M RAndersson. Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(7): 2663–2669
https://doi.org/10.1039/C5TA06420A
10 MJeong, S Chen, S MLee, ZWang, Y Yang, Z GZhang, CZhang, MXiao, Y Li, CYang. Feasible D1-A-D2-A random copolymers for simultaneous high-performance fullerene and nonfullerene solar cells. Advanced Energy Materials, 2018, 8(7): 1702166
https://doi.org/10.1002/aenm.201702166
11 TKim, R Younts, WLee, SLee, K Gundogdu, B JKim. Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(42): 22170–22179
https://doi.org/10.1039/C7TA07535A
12 WWang, L Song, DMagerl, DMoseguí González, VKörstgens, MPhilipp, J FMoulin, PMüller-Buschbaum. Influence of solvent additive 1,8-octanedithiol on P3HT:PCBM solar cells. Advanced Functional Materials, 2018, 28(20): 1800209
https://doi.org/10.1002/adfm.201800209
13 XCai, T Yuan, XLiu, GTu. Self-assembly of 1-pyrenemethanol on ZnO surface toward combined cathode buffer layers for inverted polymer solar cells. ACS Applied Materials & Interfaces, 2017, 9(41): 36082–36089
https://doi.org/10.1021/acsami.7b10399 pmid: 28967247
14 SLu, H Lin, SZhang, JHou, W C H Choy. A switchable interconnecting layer for high performance tandem organic solar cell. Advanced Energy Materials, 2017, 7(21): 1701164
https://doi.org/10.1002/aenm.201701164
15 FZhang, W Shi, JLuo, NPellet, CYi, X Li, XZhao, T J SDennis, XLi, S Wang, YXiao, S MZakeeruddin, DBi, M Grätzel. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Advanced Materials, 2017, 29(17): 1606806
https://doi.org/10.1002/adma.201606806 pmid: 28240401
16 HChoi, C K Mai, H B Kim, J Jeong, SSong, G CBazan, J YKim, A JHeeger. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6(1): 7348
https://doi.org/10.1038/ncomms8348 pmid: 26081865
17 ILange, S Reiter, MPätzel, AZykov, ANefedov, JHildebrandt, SHecht, SKowarik, CWöll, GHeimel, DNeher. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Advanced Functional Materials, 2014, 24(44): 7014–7024
https://doi.org/10.1002/adfm.201401493
18 SNam, J Seo, MSong, HKim, M Ree, Y SGal, D D CBradley, YKim. Polyacetylene-based polyelectrolyte as a universal interfacial layer for efficient inverted polymer solar cells. Organic Electronics, 2017, 48: 61–67
https://doi.org/10.1016/j.orgel.2017.05.012
19 Y JCheng, F Y Cao, W C Lin, C H Chen, C H Hsieh. Self-assembled and cross-linked fullerene interlayer on titanium oxide for highly efficient inverted polymer solar cells. Chemistry of Materials, 2011, 23(6): 1512–1518
https://doi.org/10.1021/cm1032404
20 J HSeo, A Gutacker, YSun, HWu, F Huang, YCao, UScherf, A JHeeger, G CBazan. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416–8419
https://doi.org/10.1021/ja2037673 pmid: 21557557
21 DZhou, S Xiong, LChen, XCheng, HXu, Y Zhou, FLiu, YChen. A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications (Cambridge), 2018, 54(5): 563–566
https://doi.org/10.1039/C7CC08604K pmid: 29297519
22 Y HChao, Y Y Huang, J Y Chang, S H Peng, W Y Tu, Y J Cheng, J Hou, C SHsu. A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(40): 20382–20388
https://doi.org/10.1039/C5TA05057J
23 JZhang, R Xue, GXu, WChen, G Q Bian, C Wei, YLi, YLi. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells. Advanced Functional Materials, 2018, 28(13): 1705847
https://doi.org/10.1002/adfm.201705847
24 FZhao, Z Wang, JZhang, XZhu, Y Zhang, JFang, DDeng, Z Wei, YLi, LJiang, CWang. Self-doped and crown-ether functionalized fullerene as cathode buffer layer for highly-efficient inverted polymer solar cells. Advanced Energy Materials, 2016, 6(9): 1502120
https://doi.org/10.1002/aenm.201502120
25 CCui, Y Li, YLi. Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Advanced Energy Materials, 2017, 7(10): 1601251
https://doi.org/10.1002/aenm.201601251
26 LDerue, O Dautel, ATournebize, MDrees, HPan, S Berthumeyrie, BPavageau, ECloutet, SChambon, LHirsch, ARivaton, PHudhomme, AFacchetti, GWantz. Thermal stabilisation of polymer-fullerene bulk heterojunction morphology for efficient photovoltaic solar cells. Advanced Materials, 2014, 26(33): 5831–5838
https://doi.org/10.1002/adma.201401062 pmid: 25042898
27 CDuan, K Zhang, CZhong, FHuang, YCao. Recent advances in water/alcohol-soluble p-conjugated materials: new materials and growing applications in solar cells. Chemical Society Reviews, 2013, 42(23): 9071–9104
https://doi.org/10.1039/c3cs60200a pmid: 23995779
28 JLiu, Y Ji, YLiu, ZXia, Y Han, YLi, BSun. Doping-free asymmetrical silicon heterocontact achieved by integrating conjugated molecules for high efficient solar cell. Advanced Energy Materials, 2017, 7(19): 1700311
https://doi.org/10.1002/aenm.201700311
29 APal, L K Wen, C Y Jun, I Jeon, YMatsuo, SManzhos. Comparative density functional theory-density functional tight binding study of fullerene derivatives: effects due to fullerene size, addends, and crystallinity on band structure, charge transport and optical properties. Physical Chemistry Chemical Physics, 2017, 19(41): 28330–28343
https://doi.org/10.1039/C7CP05290A pmid: 29034938
30 Z GZhang, H Li, BQi, DChi, Z Jin, ZQi, JHou, Y Li, JWang. Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(34): 9624
https://doi.org/10.1039/c3ta12478a
31 F LZhang, A Gadisa, OInganäs, MSvensson, M RAndersson. Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letters, 2004, 84(19): 3906–3908
https://doi.org/10.1063/1.1739279
32 YLi, Y Zhao, QChen, Y MYang, YLiu, Z Hong, ZLiu, Y THsieh, LMeng, Y Li, YYang. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. Journal of the American Chemical Society, 2015, 137(49): 15540–15547
https://doi.org/10.1021/jacs.5b10614 pmid: 26592525
33 JLiu, J Li, XLiu, FLi, G Tu. Amphiphilic diblock fullerene derivatives as cathode interfacial layers for organic solar cells. ACS Applied Materials & Interfaces, 2018, 10(3): 2649–2657
https://doi.org/10.1021/acsami.7b18331 pmid: 29297221
34 T LNguyen, T H Lee, B Gautam, S YPark, KGundogdu, J YKim, H YWoo. Single component organic solar cells based on oligothiophene-fullerene conjugate. Advanced Functional Materials, 2017, 27(39): 1702474
https://doi.org/10.1002/adfm.201702474
35 YChen, Y Qin, YWu, CLi, H Yao, NLiang, XWang, W Li, WMa, JHou. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Advanced Energy Materials, 2017, 7(17): 1700328
https://doi.org/10.1002/aenm.201700328
36 J MHodgkiss, G Tu, SAlbert-Seifried, W T SHuck, R HFriend. Ion-induced formation of charge-transfer states in conjugated polyelectrolytes. Journal of the American Chemical Society, 2009, 131(25): 8913–8921
https://doi.org/10.1021/ja902167a
37 J CHummelen, B W Knight, F Lepeq, FWudl, JYao, C L Wilkins. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry, 1995, 60(3): 532–538
https://doi.org/10.1021/jo00108a012
38 H K HLee, A MTelford, J ARöhr, M FWyatt, BRice, J Wu, A de Castro Maciel, S MTuladhar, ESpeller, JMcGettrick, J RSearle, SPont, T Watson, TKirchartz, J RDurrant, W CTsoi, JNelson, ZLi. The role of fullerenes in the environmental stability of polymer:fullerene solar cells. Energy & Environmental Science, 2018, 11(2): 417–428
https://doi.org/10.1039/C7EE02983G
39 MYamada, R Ochi, YYamamoto, SOkada, YMaeda. Transition-metal-catalyzed divergent functionalization of [60]fullerene with propargylic esters. Organic & Biomolecular Chemistry, 2017, 15(40): 8499–8503
https://doi.org/10.1039/C7OB02168B pmid: 28952644
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed