Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (4) : 409-417    https://doi.org/10.1007/s12200-019-0926-1
RESEARCH ARTICLE
Ripening-resistance of Pd on TiO2(110) from first-principles kinetics
Qixin WAN1,2, Hao LIN3,4, Shuai WANG1, Jiangnan DAI1(), Changqing CHEN1
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110623, China
4. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(890 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Suppressing sintering of supported particles is of importance for the study and application of metal-TiO2 system. Theoretical study of Ostwald ripening of TiO2(110)-supported Pd particles would be helpful to extend the understanding of the sintering. In this paper, based on density functional theory (DFT), the surface energy of Pd and the total activation energy (the sum of formation energy and diffusion barrier) of TiO2-supported Pd were calculated. Since the total activation energy is mainly contributed from the formation energy, it is indicated that the ripening of Pd particles would be in the interface control limit. Subsequently, the calculated surface energy and total activation energy were used to simulate Ostwald ripening of TiO2(110)-supported Pd particles. As a result, in comparison with larger particles, smaller particles would worsen the performance of ripening-resistance according to its lower onset temperature and shorter half-life time. The differences on ripening-resistance among different size particles could be mitigated along with the increase of temperature. Moreover, it is verified that the monodispersity can improve ripening resistance especially for the smaller particles. However, the different performances of the ripening originating from difference of the relative standard deviation are more obvious at higher temperature than lower temperature. This temperature effect for the relative standard deviation is the inverse of that for the initial main particle size. It is indicated that the influence of dispersity of TiO2(110)-supported Pd particles on ripening may be more sensitive at higher temperature. In this contribution, we extend the first principle kinetics to elaborate the ripening of Pd on TiO2(110). It is expected that the information from first principle kinetics would be helpful to the study in experiments.

Keywords first-principles      Ostwald ripening      Pd      TiO2(110)     
Corresponding Author(s): Jiangnan DAI   
Just Accepted Date: 24 June 2019   Online First Date: 23 September 2019    Issue Date: 31 December 2020
 Cite this article:   
Qixin WAN,Hao LIN,Shuai WANG, et al. Ripening-resistance of Pd on TiO2(110) from first-principles kinetics[J]. Front. Optoelectron., 2020, 13(4): 409-417.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0926-1
https://academic.hep.com.cn/foe/EN/Y2020/V13/I4/409
Fig.1  Equilibrium morphology of faced-centered cubic Pd
Pd facets fi/% gi/(meV·Å−2)
(111) 49.73 82.6
(100) 15.99 95.8
(322) 14.26 90.1
(221) 14.12 91.8
(210) 3.58 101
(311) 2.32 98.8
? 100 88.1
Tab.1  Calculated surface energies (γ, in meV/Å2), surface area proportion (ƒ) of the facets exposed on faced-centered cubic (FCC) Pd from Wulff constructions
Fig.2  Side view (top) and top view (bottom) for (a) the most stable atom position and (b) corresponding transition state position of Pd on TiO2(110). Gray and blue balls represent titanium and palladium atoms. Magenta and red balls represent the upmost bridging oxygens and other oxygens respectively
Fig.3  (a) PSD corresponding to different temperatures; (b) evolution of the normalized volume V, dispersion D and particle number N, and average diameter〈d〉in right y-axis versus ramping temperature for Pd on TiO2(110). Star represents onset temperature Ton. The supported particle ensemble responds to a linear temperature ramp process starting from 200 K at a rate of 1 K/s. The contact angle (a) was set as 90o. The surface energy of Pd is 88.1 meV/Å2.〈d0〉= 3 nm, rsd = 10%
Fig.4  (a) PSD corresponding to different time; (b) evolution of the normalized volume V, dispersion D and particle number N, and average diameter 〈d〉 in right y-axis versus ripening time for Pd on TiO2(110). Star represents half-life time t1/2. The contact angle (a) was set as 90o. The surface energy of Pd is 88.1 meV/Å2. 〈d0〉= 3 nm, rsd = 10%, T=600 K
Fig.5  (a) Onset temperature Ton and (b) half-life time t1/2 versus different initial average particle diameter 〈d0〉 under the same relative standard deviation rsd = 10%. The contact angle (a) was set as 90o. The surface energy of Pd is 88.1 meV/Å2
Fig.6  (a) Onset temperature Ton and (b) half-life time t1/2 versus relative standard deviation rsd under the same initial 〈d0〉 = 3 nm. The contact angle (a) was set as 90o. The surface energy of Pd is 88.1 meV/Å2
1 U Diebold. The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5–8): 53–229
https://doi.org/10.1016/S0167-5729(02)00100-0
2 M S Chen, D W Goodman. The structure of catalytically active gold on titania. Science, 2004, 306(5694): 252–255
https://doi.org/10.1126/science.1102420 pmid: 15331772
3 M Valden, X Lai, D W Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650
https://doi.org/10.1126/science.281.5383.1647 pmid: 9733505
4 Q Fu, T Wagner. Interaction of nanostructured metal overlayers with oxide surfaces. Surface Science Reports, 2007, 62(11): 431–498
https://doi.org/10.1016/j.surfrep.2007.07.001
5 U Diebold, J-M Pan, T E Madey. Ultrathin metal film growth on TiO2(110): an overview. Surface Science, 1995, 331–333(Part B): 845–854
6 M Hu, S Noda, H Komiyama. A new insight into the growth mode of metals on TiO2(110). Surface Science, 2002, 513(3): 530–538
7 R Persaud, T E Madey. Chapter 11 Growth, structure and reactivity of ultrathin metal films on TiO2 surfaces. In: King D A, Woodruff D P, eds. Growth and Properties of Ultrathin Epitaxial Layers. The Chemical Physics of Solid Surfaces, 1997, 8: 407–447
8 J B Park, J S Ratliff, S Ma, D A Chen. In situ scanning tunneling microscopy studies of bimetallic cluster growth: Pt–Rh on TiO2(110). Surface Science, 2006, 600(14): 2913–2923
9 Y Lei, H Liu, W Xiao. First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025004
https://doi.org/10.1088/0965-0393/18/2/025004
10 C H Bartholomew. Mechanisms of catalyst deactivation. Applied Catalysis A, General, 2001, 212(1–2): 17–60
https://doi.org/10.1016/S0926-860X(00)00843-7
11 J A Moulijn, A E van Diepen, F Kapteijn. Catalyst deactivation: is it predictable? what to do? Applied Catalysis A, General, 2001, 212(1–2): 3–16
https://doi.org/10.1016/S0926-860X(00)00842-5
12 P Forzatti, L Lietti. Catalyst deactivation. Catalysis Today, 1999, 52(2-3): 165–181
https://doi.org/10.1016/S0920-5861(99)00074-7
13 J G McCarty, M Gusman, D M Lowe, D L Hildenbrand, K N Lau. Stability of supported metal and supported metal oxide combustion catalysts. Catalysis Today, 1999, 47(1-4): 5–17
https://doi.org/10.1016/S0920-5861(98)00279-X
14 L Bugyi, L Óvári, Z Kónya. The formation and stability of Rh nanostructures on TiO2(110) surface and TiOx encapsulation layers. Applied Surface Science, 2013, 280: 60–66
https://doi.org/10.1016/j.apsusc.2013.04.083
15 I Piwoński, K Spilarewicz-Stanek, A Kisielewska, K Kądzioła, M Cichomski, J Ginter. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Applied Surface Science, 2016, 373: 38–44
https://doi.org/10.1016/j.apsusc.2016.01.131
16 E Madej, N Spiridis, R P Socha, B Wolanin, J Korecki. The nucleation, growth and thermal stability of iron clusters on a TiO2(110) surface. Applied Surface Science, 2017, 416: 144–151
https://doi.org/10.1016/j.apsusc.2017.04.114
17 M J J Jak, C Konstapel, A van Kreuningen, J Verhoeven, J W M Frenken. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110). Surface Science, 2000, 457(3): 295–310
18 P Stone, R A Bennett, S Poulston, M Bowker. Scanning tunnelling microscopy and Auger electron spectroscopy study of Pd on TiO2(110). Surface Science, 1999, 433–435(2): 501–505
19 P Stone, S Poulston, R A Bennett, M Bowker. Scanning tunnelling microscopy investigation of sintering in a model supported catalyst: nanoscale Pd on TiO2(110). Chemical Communications, 1998, 13: 1369–1370
https://doi.org/10.1039/a802881h
20 A Howard, C E J Mitchell, R G Egdell. Real time STM observation of Ostwald ripening of Pd nanoparticles on TiO2(110) at elevated temperature. Surface Science, 2002, 515(2−3): L504–L508
21 Y Q Su, J X Liu, I A W Filot, E J M Hensen. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chemistry of Materials, 2017, 29(21): 9456–9462
https://doi.org/10.1021/acs.chemmater.7b03555 pmid: 29170602
22 T W Hansen, A T Delariva, S R Challa, A K Datye. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Accounts of Chemical Research, 2013, 46(8): 1720–1730
https://doi.org/10.1021/ar3002427 pmid: 23634641
23 C T Campbell. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 2013, 46(8): 1712–1719
https://doi.org/10.1021/ar3003514 pmid: 23607711
24 S Hu, W X Li. Influence of particle size distribution on lifetime and thermal stability of Ostwald ripening of supported particles. ChemCatChem, 2018, 10(13): 2900–2907
https://doi.org/10.1002/cctc.201800331
25 P Wynblatt, N A Gjostein. Supported metal crystallites. Progress in Solid State Chemistry, 1975, 9: 21–58
https://doi.org/10.1016/0079-6786(75)90013-8
26 S B Kang, J B Lim, D Jo, I S Nam, B K Cho, S B Hong, C H Kim, S H Oh. Ostwald-ripening sintering kinetics of Pd-based three-way catalyst: importance of initial particle size of Pd. Chemical Engineering Journal, 2017, 316: 631–644
https://doi.org/10.1016/j.cej.2017.01.136
27 B R Goldsmith, E D Sanderson, R Ouyang, W X Li. CO- and NO-induced disintegration and redispersion of three-way catalysts rhodium, palladium, and platinum: an ab initio thermodynamics study. Journal of Physical Chemistry C, 2014, 118(18): 9588–9597
https://doi.org/10.1021/jp502201f
28 R Ouyang, J X Liu, W X Li. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. Journal of the American Chemical Society, 2013, 135(5): 1760–1771
https://doi.org/10.1021/ja3087054 pmid: 23272702
29 S Hu, W X Li. Theoretical investigation of metal-support interactions on ripening kinetics of supported particles. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4(5): 510–517
https://doi.org/10.1002/cnma.201800052
30 Q Wan, S Hu, J Dai, C Chen, W X Li. First-principles kinetic study for Ostwald ripening of late transition metals on TiO2(110). Journal of Physical Chemistry C, 2019, 123(2): 1160–1169
https://doi.org/10.1021/acs.jpcc.8b08530
31 L Vitos, A V Ruban, H L Skriver, J Kollár. The surface energy of metals. Surface Science, 1998, 411(1−2): 186–202
32 C Zhao, Q Wan, J Dai, J Zhang, F Wu, S Wang, H Long, J Chen, C Chen, C Chen. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation. Frontiers of Optoelectronics, 2017, 10(4): 363–369
https://doi.org/10.1007/s12200-017-0728-2
33 S C Parker, C T Campbell. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110). Physical Review B, 2007, 75(3): 035430
https://doi.org/10.1103/PhysRevB.75.035430
34 C A Johnson. Generalization of the Gibbs-Thomson equation. Surface Science, 1965, 3(5): 429–444
35 S C Parker, C T Campbell. Reactivity and sintering kinetics of Au/TiO2(110) model catalysts: particle size effects. Topics in Catalysis, 2007, 44(1–2): 3–13
https://doi.org/10.1007/s11244-007-0274-z
36 G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169 pmid: 9984901
37 G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
https://doi.org/10.1016/0927-0256(96)00008-0
38 G Kresse, J Hafner. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47(1): 558–561
https://doi.org/10.1103/PhysRevB.47.558 pmid: 10004490
39 R P Feynman. Forces in molecules. Physical Review, 1939, 56(4): 340–343
https://doi.org/10.1103/PhysRev.56.340
40 B Hammer, L B Hansen, J K Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413–7421
https://doi.org/10.1103/PhysRevB.59.7413
41 F A Grant. Properties of rutile (titanium dioxide). Reviews of Modern Physics, 1959, 31(3): 646–674
https://doi.org/10.1103/RevModPhys.31.646
42 H Y Kim, H M Lee, R G S Pala, V Shapovalov, H Metiu. CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn. Journal of Physical Chemistry C, 2008, 112(32): 12398–12408
https://doi.org/10.1021/jp802296g
43 G Henkelman, H Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985
https://doi.org/10.1063/1.1323224
44 G Henkelman, B P Uberuaga, H Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
45 S H Overbury, P A Bertrand, G A Somorjai. Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical Reviews, 1975, 75(5): 547–560
https://doi.org/10.1021/cr60297a001
46 W Zhao, H Lin, Y Li, Y Zhang, X Huang, W Chen. Growth mechanism of palladium clusters on rutile TiO2(110) surface. Journal of Natural Gas Chemistry, 2012, 21(5): 544–555
https://doi.org/10.1016/S1003-9953(11)60403-9
47 J F Sanz, A Márquez. Adsorption of Pd atoms and dimers on the TiO2(110) surface: a first principles study. Journal of Physical Chemistry C, 2007, 111(10): 3949–3955
https://doi.org/10.1021/jp0639952
48 C Kittel. Introduction to Solid State Physics. New York: John Wiley & Sons, 1966
49 H M Lu, P Y Li, Z H Cao, X K Meng. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. Journal of Physical Chemistry C, 2009, 113(18): 7598–7602
https://doi.org/10.1021/jp900314q
50 C T Campbell, S C Parker, D E Starr. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814
https://doi.org/10.1126/science.1075094 pmid: 12399586
[1] Dmitry V. YAKOVLEV, Dina S. FARRAKHOVA, Artem A. SHIRYAEV, Kanamat T. EFENDIEV, Maxim V. LOSCHENOV, Liana M. AMIRKHANOVA, Dmitry O. KORNEV, Vladimir V. LEVKIN, Igor V. RESHETOV, Victor B. LOSCHENOV. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Front. Optoelectron., 2020, 13(4): 352-359.
[2] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[3] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[4] Xiaoxia LIU, Chaoping LIU, Gui CHEN, Haiqing LI. Influence of cerium ions on thermal bleaching of photo-darkened ytterbium-doped fibers[J]. Front. Optoelectron., 2018, 11(4): 394-399.
[5] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[6] Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMÜLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STRÖBL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
[7] Junguo LIN,Dewen CHENG,Cheng YAO,Yongtian WANG. Retinal projection head-mounted display[J]. Front. Optoelectron., 2017, 10(1): 1-8.
[8] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[9] Mohammad H. AKBARI, Mohsen JALALI. Position dependent circuit model for thin avalanche photodiodes[J]. Front Optoelec, 2013, 6(2): 194-198.
[10] Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Front Optoelec, 2013, 6(2): 199-209.
[11] Saeed OLYAEE, Mohammad SOROOSH, Mahdieh IZADPANAH. Transfer matrix modeling of avalanche photodiode[J]. Front Optoelec, 2012, 5(3): 317-321.
[12] Shijuan WU, Baojian WU, Kun QIU, Chongzhen LI. Simulation model of magneto-optic fiber Bragg gratings and its applications in Sagnac interferometers[J]. Front Optoelec Chin, 2010, 3(4): 359-363.
[13] Cao MIAO, Hai LU, Dunjun CHEN, Rong ZHANG, Youdou ZHENG. InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices[J]. Front Optoelec Chin, 2009, 2(4): 442-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed