|
|
|
Research development on fabrication and optical properties of nonlinear photonic crystals |
Huangjia LI, Boqin MA( ) |
| School of Data Science and Media Intelligence, Communication University of China, Beijing 100024, China |
|
|
|
|
Abstract Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.
|
| Keywords
quasi-phase matching (QPM)
nonlinear diffraction (ND)
superlattice
nonlinear photonic crystal (NPC)
reciprocal lattice vector (RLV)
|
|
Corresponding Author(s):
Boqin MA
|
|
Just Accepted Date: 18 September 2019
Online First Date: 12 November 2019
Issue Date: 03 April 2020
|
|
| 1 |
J A Armstrong, N Bloembergen, J Ducuing, P S Pershan. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
https://doi.org/10.1103/PhysRev.127.1918
|
| 2 |
M Yamada, N Nada, M Saitoh, K Watanabe. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
https://doi.org/10.1063/1.108925
|
| 3 |
S Zhu, Y Zhu, Y Qin, H Wang, C Ge, N Ming. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755
https://doi.org/10.1103/PhysRevLett.78.2752
|
| 4 |
S Zhu, Y Zhu, N Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
https://doi.org/10.1126/science.278.5339.843
|
| 5 |
V Berger. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
https://doi.org/10.1103/PhysRevLett.81.4136
|
| 6 |
N G Broderick, G W Ross, H L Offerhaus, D J Richardson, D C Hanna. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84(19): 4345–4348
https://doi.org/10.1103/PhysRevLett.84.4345
pmid: 10990682
|
| 7 |
A Fragemann, V Pasiskevicius, F Laurell. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters, 2004, 85(3): 375–377
https://doi.org/10.1063/1.1775031
|
| 8 |
S M Saltiel, D N Neshev, W Krolikowski, A Arie, Y S Kivshar. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2
|
| 9 |
Y Sheng, A Best, H J Butt, W Krolikowski, A Arie, K Koynov. Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. Optics Express, 2010, 18(16): 16539–16545
https://doi.org/10.1364/OE.18.016539
pmid: 20721043
|
| 10 |
H Li, S Mu, P Xu, M Zhong, C Chen, X Hu, W Cui, S Zhu. Multicolor Čerenkov conical beams generation by cascaded-c(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters, 2012, 100(10): 101101
https://doi.org/10.1063/1.3692593
|
| 11 |
B Ma, K Kafka, E Chowdhury. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters, 2017, 15(5): 051901
https://doi.org/10.3788/COL201715.051901
|
| 12 |
S Liu, K Switkowski, X Chen, T Xu, W Krolikowski, Y Sheng. Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express, 2018, 26(7): 8628–8633
https://doi.org/10.1364/OE.26.008628
pmid: 29715827
|
| 13 |
Y Sheng, W Wang, R Shiloh, V Roppo, Y Kong, A Arie, W Krolikowski. Čerenkov third-harmonic generation in c(2) nonlinear photonic crystal. Applied Physics Letters, 2011, 98(24): 241114
https://doi.org/10.1063/1.3602312
|
| 14 |
J Yao, G Li, J Xu, G Zhang. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics, 1999, 16(4): 289–294
|
| 15 |
J Thomas, V Hilbert, R Geiss, T Pertsch, A Tünnermann, S Nolte. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews, 2013, 7(3): L17–L20
https://doi.org/10.1002/lpor.201200116
|
| 16 |
G Rosenman, P Urenski, A Agronin, Y Rosenwaks, M Molotskii. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters, 2003, 82(1): 103–105
https://doi.org/10.1063/1.1534410
|
| 17 |
M Yamada, K Kishima. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters, 1991, 27(10): 828–829
https://doi.org/10.1049/el:19910519
|
| 18 |
D Wei, Y Zhu, W Zhong, G Cui, H Wang, Y He, Y Zhang, Y Lu, M Xiao. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 2017, 110(26): 261104
https://doi.org/10.1063/1.4990527
|
| 19 |
G A Magel, M M Fejer, R L Byer. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters, 1990, 56(2): 108–110
https://doi.org/10.1063/1.103276
|
| 20 |
T Xu, D Lu, H Yu, H Zhang, Y Zhang, J Wang. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters, 2016, 108(5): 051907
https://doi.org/10.1063/1.4941432
|
| 21 |
H Leng. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Dissertation for the Doctoral Degree. Nanjing: Nanjing University, 2014, 77–79
|
| 22 |
M M Fejer. Nonlinear optical frequency conversion. Physics Today, 1994, 47(5): 25–32
https://doi.org/10.1063/1.881430
|
| 23 |
I Freund. Nonlinear diffraction. Physical Review Letters, 1968, 21(19): 1404–1406
https://doi.org/10.1103/PhysRevLett.21.1404
|
| 24 |
K Kalinowski, P Roedig, Y Sheng, M Ayoub, J Imbrock, C Denz, W Krolikowski. Enhanced Čerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters, 2012, 37(11): 1832–1834
https://doi.org/10.1364/OL.37.001832
pmid: 22660044
|
| 25 |
A M Vyunishev, V V Slabko, I S Baturin, A R Akhmatkhanov, V Y Shur. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39(14): 4231–4234
https://doi.org/10.1364/OL.39.004231
pmid: 25121694
|
| 26 |
X Wang, X Zhao, Y Zheng, X Chen. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics, 2017, 56(3): 750–754
https://doi.org/10.1364/AO.56.000750
pmid: 28157940
|
| 27 |
G D Miller, R G Batchko, W M Tulloch, D R Weise, M M Fejer, R L Byer. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters, 1997, 22(24): 1834–1836
https://doi.org/10.1364/OL.22.001834
pmid: 18188379
|
| 28 |
S M Saltiel, D N Neshev, W Krolikowski, A Arie, O Bang, Y S Kivshar. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters, 2009, 34(6): 848–850
https://doi.org/10.1364/OL.34.000848
pmid: 19282953
|
| 29 |
H Liu, J Li, X Zhao, Y Zheng, X Chen. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express, 2016, 24(14): 15666–15671
https://doi.org/10.1364/OE.24.015666
pmid: 27410839
|
| 30 |
H Li, Y Fan, P Xu, S Zhu, P Lu, Z Gao, H Wang, Y Zhu, N Ming, J L He. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96(12): 7756–7758
https://doi.org/10.1063/1.1818711
|
| 31 |
B Chen, M Ren, R Liu, C Zhang, Y Sheng, B Ma, Z Li. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications, 2014, 3(7): e189
https://doi.org/10.1038/lsa.2014.70
|
| 32 |
W Wang, X Niu, C Zhou. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals, 2014, 43(5): 1252–1256
|
| 33 |
B Gu, B Dong, Y Zhang, G Yang. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters, 1999, 75(15): 2175–2177
https://doi.org/10.1063/1.124956
|
| 34 |
N Segal, S Keren-Zur, N Hendler, T Ellenbogen. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180–184
https://doi.org/10.1038/nphoton.2015.17
|
| 35 |
F Reyes Gómez, N Porras-Montenegro, O N Oliveira Jr, J R Mejía-Salazar. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega, 2018, 3(12): 17922–17927
https://doi.org/10.1021/acsomega.8b02837
pmid: 31458384
|
| 36 |
F R Gómez, N Porras-Montenegro, O N Oliveira, J R Mejía-Salazar. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B, 2018, 98(7): 075406
https://doi.org/10.1103/PhysRevB.98.075406
|
| 37 |
F R Gómez, J R Mejía-Salazar. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters, 2015, 40(21): 5034–5037
https://doi.org/10.1364/OL.40.005034
pmid: 26512512
|
| 38 |
A X Robles-Uriza, F R Gómez, J R Mejía-Salazar. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures, 2016, 97: 110–115
https://doi.org/10.1016/j.spmi.2016.06.020
|
| 39 |
F R Gómez, J R Mejía-Salazar, O N Oliveira, N Porras-Montenegro. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B, 2017, 96(7): 075429
https://doi.org/10.1103/PhysRevB.96.075429
|
| 40 |
D Kasimov, A Arie, E Winebrand, G Rosenman, A Bruner, P Shaier, D Eger. Annular symmetry nonlinear frequency converters. Optics Express, 2006, 14(20): 9371–9376
https://doi.org/10.1364/OE.14.009371
pmid: 19529321
|
| 41 |
Y Q Qin, C Zhang, Y Y Zhu, X P Hu, G Zhao. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters, 2008, 100(6): 063902
https://doi.org/10.1103/PhysRevLett.100.063902
pmid: 18352473
|
| 42 |
B Chen, C Zhang, R Liu, Z Li. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters, 2014, 105(15): 151106
https://doi.org/10.1063/1.4898187
|
| 43 |
B Ma, T Wang, Y Sheng, P Ni, Y Wang, B Cheng, D Zhang. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters, 2005, 87(25): 251103
https://doi.org/10.1063/1.2138352
|
| 44 |
B Ma, M Ren, D Ma, Z Li. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics, 2013, 111(2): 183–187
https://doi.org/10.1007/s00340-012-5277-1
|
| 45 |
Y Zhang, Z D Gao, Z Qi, S N Zhu, N B Ming. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters, 2008, 100(16): 163904
https://doi.org/10.1103/PhysRevLett.100.163904
pmid: 18518200
|
| 46 |
P Ni, B Ma, X Wang, B Cheng, D Zhang. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters, 2003, 82(24): 4230–4232
https://doi.org/10.1063/1.1579856
|
| 47 |
L Peng, C Hsu, J Ng, A Kung. Wavelength tunability of second-harmonic generation from two-dimensional c(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters, 2004, 84(17): 3250–3252
https://doi.org/10.1063/1.1728303
|
| 48 |
P Ni, B Ma, S Feng, B Cheng, D Zhang. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications, 2004, 233(1–3): 199–203
https://doi.org/10.1016/j.optcom.2004.01.003
|
| 49 |
S M Saltiel, Y Sheng, N Voloch-Bloch, D N Neshev, W Krolikowski, A Arie, K Koynov, Y S Kivshar. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465–1472
https://doi.org/10.1109/JQE.2009.2030147
|
| 50 |
T Wang, B Ma, Y Sheng, P Ni, B Cheng, D Zhang. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications, 2005, 252(4–6): 397–401
https://doi.org/10.1016/j.optcom.2005.04.019
|
| 51 |
Y Sheng, K Koynov, D Zhang. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282(17): 3602–3606
https://doi.org/10.1016/j.optcom.2009.05.075
|
| 52 |
B Hou, G Xu, W Wen, G K Wong. Diffraction by an optical fractal grating. Applied Physics Letters, 2004, 85(25): 6125–6127
https://doi.org/10.1063/1.1840112
|
| 53 |
H Park, A Camper, K Kafka, B Ma, Y H Lai, C Blaga, P Agostini, L F DiMauro, E Chowdhury. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters, 2017, 42(19): 4020–4023
https://doi.org/10.1364/OL.42.004020
pmid: 28957187
|
| 54 |
B Ma, H Li. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers, 2019, 46(2): 0208001
https://doi.org/10.3788/CJL201946.0208001
|
| 55 |
L Mateos, P Molina, J Galisteo, C López, L E Bausá, M O Ramírez. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20(28): 29940–29948
https://doi.org/10.1364/OE.20.029940
pmid: 23388820
|
| 56 |
W Wang, Y Sheng, Y Kong, A Arie, W Krolikowski. Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters, 2010, 35(22): 3790–3792
https://doi.org/10.1364/OL.35.003790
pmid: 21081998
|
| 57 |
S M Saltiel, D N Neshev, W Krolikowski, N Voloch-Bloch, A Arie, O Bang, Y S Kivshar. Nonlinear diffraction from a virtual beam. Physical Review Letters, 2010, 104(8): 083902
https://doi.org/10.1103/PhysRevLett.104.083902
pmid: 20366931
|
| 58 |
A M Vyunishev, V G Arkhipkin, I S Baturin, A R Akhmatkhanov, V Y Shur, A S Chirkin. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a c(2) photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15(4): 045401
https://doi.org/10.1088/1612-202X/aaa618
|
| 59 |
E Almeida, O Bitton, Y Prior. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
https://doi.org/10.1038/ncomms12533
pmid: 27545581
|
| 60 |
D Wei, C Wang, H Wang, X Hu, D Wei, X Fang, Y Zhang, D Wu, Y Hu, J Li, S Zhu, M Xiao. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596–600
https://doi.org/10.1038/s41566-018-0240-2
|
| 61 |
T Xu, K Switkowski, X Chen, S Liu, K Koynov, H Yu, H Zhang, J Wang, Y Sheng, W Krolikowski. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12(10): 591–595
https://doi.org/10.1038/s41566-018-0225-1
|
| 62 |
J Zhang, X Zhao, Y Zheng, H Li, X Chen. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express, 2018, 26(12): 15675–15682
https://doi.org/10.1364/OE.26.015675
pmid: 30114825
|
| 63 |
P E Powers, T J Kulp, S E Bisson. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters, 1998, 23(3): 159–161
https://doi.org/10.1364/OL.23.000159
pmid: 18084445
|
| 64 |
Y Sasaki, Y Avetisyan, H Yokoyama, H Ito. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters, 2005, 30(21): 2927–2929
https://doi.org/10.1364/OL.30.002927
pmid: 16279471
|
| 65 |
A Shapira, L Naor, A Arie. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin, 2015, 60(16): 1403–1415
https://doi.org/10.1007/s11434-015-0855-3
|
| 66 |
A Tokura, M Asobe, K Enbutsu, T Yoshihara, S N Hashida, H Takenouchi. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel), 2013, 13(8): 9999–10013
https://doi.org/10.3390/s130809999
pmid: 23921829
|
| 67 |
L E Myers, G D Miller, R C Eckardt, M M Fejer, R L Byer, W R Bosenberg. Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters, 1995, 20(1): 52–54
https://doi.org/10.1364/OL.20.000052
pmid: 19855794
|
| 68 |
L E Myers, W R Bosenberg. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663–1672
https://doi.org/10.1109/3.631262
|
| 69 |
K C Burr, C L Tang, M A Arbore, M M Fejer. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters, 1997, 70(25): 3341–3343
https://doi.org/10.1063/1.119164
|
| 70 |
R G Batchko, D R Weise, T Plettner, G D Miller, M M Fejer, R L Byer. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters, 1998, 23(3): 168–170
https://doi.org/10.1364/OL.23.000168
pmid: 18084448
|
| 71 |
T D Wang, S T Lin, Y Y Lin, A C Chiang, Y C Huang. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express, 2008, 16(9): 6471–6478
https://doi.org/10.1364/OE.16.006471
pmid: 18545351
|
| 72 |
H Liu, X Zhao, H Li, Y Zheng, X Chen. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters, 2018, 43(14): 3236–3239
https://doi.org/10.1364/OL.43.003236
pmid: 30004474
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|