Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (4) : 393-401    https://doi.org/10.1007/s12200-019-0951-0
RESEARCH ARTICLE
Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography
Sergey Yu. KSENOFONTOV1,2, Pavel A. SHILYAGIN2(), Dmitry A. TERPELOV2, Valentin M. GELIKONOV2, Grigory V. GELIKONOV2
1. BioMedTech Llc, Nizhny Novgorod 603155, Russia
2. Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod 603950, Russia
 Download: PDF(4101 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A numerical method that compensates image distortions caused by random fluctuations of the distance to an object in spectral-domain optical coherence tomography (SD OCT) has been proposed and verified experimentally. The proposed method is based on the analysis of the phase shifts between adjacent scans that are caused by micrometer-scale displacements and the subsequent compensation for the displacements through phase-frequency correction in the spectral space. The efficiency of the method is demonstrated in model experiments with harmonic and random movements of a scattering object as well as during in vivo imaging of the retina of the human eye.

Keywords optical coherence tomography (OCT)      motion artifact correction      retinal imaging      numerical method     
Corresponding Author(s): Pavel A. SHILYAGIN   
Just Accepted Date: 28 October 2019   Online First Date: 15 January 2020    Issue Date: 31 December 2020
 Cite this article:   
Sergey Yu. KSENOFONTOV,Pavel A. SHILYAGIN,Dmitry A. TERPELOV, et al. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0951-0
https://academic.hep.com.cn/foe/EN/Y2020/V13/I4/393
Fig.1  Schematic of an SD OCT system based on a Michelson interferometer
Fig.2  Typical scan patterns in OCT imaging with continuous registering of A-scans, (a) raster with two directions, (b) concentric spiral, (c) Lissajous curves, (d) cylindrical, and (e) a sample of sequential A-scan beams overlapping
Fig.3  Displacement correction in OCT images of a human retina. Initial image sections: (a) across the slow axis, (d) en-face section at the selected depth denoted by dashed line in (a), and (b) displacement calculated in phase units for the entire 3D image. Restored image sections: (c) across the slow axis (same section as (a)), (e) en-face section at the selected depth
Fig.4  Schematic of experiment to simulate mutual vertical displacements of the object and the OCT system
Fig.5  OCT images of the sample: (a) when the sample is at rest, (b) with vertical harmonic oscillations of the sample, (c) same as (b) with compensation for axial displacements, (d) with stochastic vertical displacements of the sample, and (e) same as (d) with compensation for axial displacements
Fig.6  OCT images of the part of the retina near the optic nerve (a) without compensation, and (b) with compensation for axial displacements
1 A F Fercher, C K Hitzenberger, G Kamp, S Y El-Zaiat. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1–2): 43–48
https://doi.org/10.1016/0030-4018(95)00119-S
2 V M Gelikonov, G V Gelikonov, D A Terpelov, P A Shilyagin. Electronic interface systems for goals of spectral domain optical coherence tomography. Instruments and Experimental Techniques, 2012, 55(3): 392–398
https://doi.org/10.1134/S0020441212020042
3 H Rajabi, A Zirak. Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images. Biomedical Physics & Engineering Express, 2016, 2(3): e035012
https://doi.org/10.1088/2057-1976/2/3/035012
4 W Kang, H Wang, Z Wang, M W Jenkins, G A Isenberg, A Chak, A M Rollins. Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Optics Express, 2011, 19(21): 20722–20735
https://doi.org/10.1364/OE.19.020722 pmid: 21997082
5 R de Kinkelder, J Kalkman, D J Faber, O Schraa, P H B Kok, F D Verbraak, T G van Leeuwen. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina. Investigative Ophthalmology & Visual Science, 2011, 52(6): 3908–3913
https://doi.org/10.1167/iovs.10-6738 pmid: 21467182
6 R J Zawadzki, D T Miller. Retinal AO OCT. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 1849–1920
7 V M Gelikonov, G V Gelikonov, P A Shilyagin. Optimization of Fizeau-based optical coherence tomography with a reference michelson interferometer. Bulletin of the Russian Academy of Sciences. Physics, 2008, 72(1): 93–97
8 M F Kraus, B Potsaid, M A Mayer, R Bock, B Baumann, J J Liu, J Hornegger, J G Fujimoto. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomedical Optics Express, 2012, 3(6): 1182–1199
https://doi.org/10.1364/BOE.3.001182 pmid: 22741067
9 M F Kraus, J J Liu, J Schottenhamml, C L Chen, A Budai, L Branchini, T Ko, H Ishikawa, G Wollstein, J Schuman, J S Duker, J G Fujimoto, J Hornegger. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomedical Optics Express, 2014, 5(8): 2591–2613
https://doi.org/10.1364/BOE.5.002591 pmid: 25136488
10 Z Chen, Y Shen, W Bao, P Li, X Wang, Z Ding. Motion correction using overlapped data correlation based on a spatial-spectral encoded parallel optical coherence tomography. Optics Express, 2017, 25(6): 7069–7083
https://doi.org/10.1364/OE.25.007069 pmid: 28381047
11 Y Chen, Y J Hong, S Makita, Y Yasuno. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomedical Optics Express, 2018, 9(3): 1111–1129
https://doi.org/10.1364/BOE.9.001111 pmid: 29541507
12 B Potsaid, I Gorczynska, V J Srinivasan, Y Chen, J Jiang, A Cable, J G Fujimoto. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70000 to 312500 axial scans per second. Optics Express, 2008, 16(19): 15149–15169
https://doi.org/10.1364/OE.16.015149 pmid: 18795054
13 J Lezama, D Mukherjee, R P McNabb, G Sapiro, A N Kuo, S Farsiu. Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes. Biomedical Optics Express, 2016, 7(12): 4827–4846
https://doi.org/10.1364/BOE.7.004827 pmid: 28018709
14 A Camino, M Zhang, C Dongye, A D Pechauer, T S Hwang, S T Bailey, B Lujan, D J Wilson, D Huang, Y Jia. Automated registration and enhanced processing of clinical optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2016, 6(4): 391–401
https://doi.org/10.21037/qims.2016.07.02 pmid: 27709075
15 A Baghaie, Z Yu, R M D’Souza. Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution? Medical Image Analysis, 2017, 37: 129–145
https://doi.org/10.1016/j.media.2017.02.002 pmid: 28208100
16 A Camino, M Zhang, S S Gao, T S Hwang, U Sharma, D J Wilson, D Huang, Y Jia. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomedical Optics Express, 2016, 7(10): 3905–3915
https://doi.org/10.1364/BOE.7.003905 pmid: 27867702
17 A Lang, A Carass, O Al-Louzi, P Bhargava, S D Solomon, P A Calabresi, J L Prince. Combined registration and motion correction of longitudinal retinal OCT data. In: Proceedings of SPIE, Volume 9784, Medical Imaging 2016: Image Processing. San Diego: SPIE, 2016, 97840X
https://doi.org/10.1117/12.2217157 pmid: 27231406
18 Y Watanabe, Y Takahashi, H Numazawa. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. Journal of Biomedical Optics, 2013, 19(2): 021105
https://doi.org/10.1117/1.JBO.19.2.021105 pmid: 23846119
19 N D Shemonski, S S Ahn, Y Z Liu, F A South, P S Carney, S A Boppart. Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. Biomedical Optics Express, 2014, 5(12): 4131–4143
https://doi.org/10.1364/BOE.5.004131 pmid: 25574426
20 J Lee, V Srinivasan, H Radhakrishnan, D A Boas. Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Optics Express, 2011, 19(22): 21258–21270
https://doi.org/10.1364/OE.19.021258 pmid: 22108978
21 O M Carrasco-Zevallos, D Nankivil, C Viehland, B Keller, J A Izatt. Pupil tracking for real-time motion corrected anterior segment optical coherence tomography. PLoS One, 2016, 11(8): e0162015
https://doi.org/10.1371/journal.pone.0162015 pmid: 27574800
22 B Braaf, K V Vienola, C K Sheehy, Q Yang, K A Vermeer, P Tiruveedhula, D W Arathorn, A Roorda, J F de Boer. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomedical Optics Express, 2013, 4(1): 51–65
https://doi.org/10.1364/BOE.4.000051 pmid: 23304647
23 A Montuoro, J Wu, S Waldstein, B Gerendas, G Langs, C Simader, U Schmidt-Erfurth. Motion artefact correction in retinal optical coherence tomography using local symmetry. In: Proceedings of MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. Boston: Springer, 2014, 17, 130–137
24 Z Hu, A M Rollins. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Optics Letters, 2007, 32(24): 3525–3527
https://doi.org/10.1364/OL.32.003525 pmid: 18087530
25 V M Gelikonov, G V Gelikonov, P A Shilyagin. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(3): 459–465
https://doi.org/10.1134/S0030400X09030242
26 P A Shilyagin, S Y Ksenofontov, A A Moiseev, D A Terpelov, V A Matkivsky, I V Kasatkina, Y A Mamaev, G V Gelikonov, V M Gelikonov. Equidistant recording of the spectral components in ultra-wideband spectral-domain optical coherence tomography. Radiophysics and Quantum Electronics, 2018, 60(10): 769–778
https://doi.org/10.1007/s11141-018-9845-z
27 D A Terpelov, S Y Ksenofontov, G V Gelikonov, V M Gelikonov, P A Shilyagin. A data-acquisition and control system for spectral-domain optical coherence tomography with a speed of 91 912 A-scans/s based on a USB 3.0 interface. Instruments and Experimental Techniques, 2017, 60(6): 868–874
https://doi.org/10.1134/S0020441217060112
28 R A Leitgeb, M Wojtkowski. Complex and coherence-noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 195–224
29 V M Gelikonov, G V Gelikonov, I V Kasatkina, D A Terpelov, P A Shilyagin. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900
https://doi.org/10.1134/S0030400X09060174
30 J Ai, L V Wang. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. Optics Letters, 2005, 30(21): 2939–2941
https://doi.org/10.1364/OL.30.002939 pmid: 16279475
31 R A Leitgeb, C K Hitzenberger, A F Fercher, T Bajraszewski. Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Optics Letters, 2003, 28(22): 2201–2203
https://doi.org/10.1364/OL.28.002201 pmid: 14649941
32 J Zhang, J S Nelson, Z Chen. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Optics Letters, 2005, 30(2): 147–149
https://doi.org/10.1364/OL.30.000147 pmid: 15675695
33 V A Matkivsky, A A Moiseev, S Y Ksenofontov, I V Kasatkina, G V Gelikonov, D V Shabanov, P A Shilyagin, V M Gelikonov. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography. Frontiers of Optoelectronics, 2017, 10(3): 323–328
https://doi.org/10.1007/s12200-017-0736-2
34 G V Gelikonov, V M Gelikonov. Measurement and compensation for the amplitude and phase spectral distortions of an interference signal in optical coherence tomography for the relative optical-spectrum width exceeding 10%. Radiophysics and Quantum Electronics, 2018, 61(2): 135–145
https://doi.org/10.1007/s11141-018-9877-4
35 L A Matveev, V Y Zaitsev, G V Gelikonov, A L Matveyev, A A Moiseev, S Y Ksenofontov, V M Gelikonov, M A Sirotkina, N D Gladkova, V Demidov, A Vitkin. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475
https://doi.org/10.1364/OL.40.001472 pmid: 25831362
36 A Moiseev, S Ksenofontov, M Sirotkina, E Kiseleva, M Gorozhantseva, N Shakhova, L Matveev, V Zaitsev, A Matveyev, E Zagaynova, V Gelikonov, N Gladkova, A Vitkin, G Gelikonov. Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use. Journal of Biophotonics, 2018, 11(10): e201700292
https://doi.org/10.1002/jbio.201700292 pmid: 29737042
37 L Huo, J Xi, Y Wu, X Li. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Optics Express, 2010, 18(14): 14375–14384
https://doi.org/10.1364/OE.18.014375 pmid: 20639922
38 S Moon, S W Lee, M Rubinstein, B J F Wong, Z Chen. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Optics Express, 2010, 18(20): 21183–21197
https://doi.org/10.1364/OE.18.021183 pmid: 20941015
39 H C Park, Y H Seo, K H Jeong. Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation. Optics Express, 2014, 22(5): 5818–5825
https://doi.org/10.1364/OE.22.005818 pmid: 24663919
40 Y Chen, Y J Hong, S Makita, Y Yasuno. Three-dimensional eye motion correction by Lissajous scan optical coherence tomography. Biomedical Optics Express, 2017, 8(3): 1783–1802
https://doi.org/10.1364/BOE.8.001783 pmid: 28663866
41 B C Chauhan, K T Stevens, J M Levesque, A C Nuschke, G P Sharpe, N O’Leary, M L Archibald, X Wang. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One, 2012, 7(6): e40352
https://doi.org/10.1371/journal.pone.0040352 pmid: 22768284
42 G Taibbi, G C Peterson, M F Syed, G Vizzeri. Effect of motion artifacts and scan circle displacements on Cirrus HD-OCT retinal nerve fiber layer thickness measurements. Investigative Ophthalmology & Visual Science, 2014, 55(4): 2251–2258
https://doi.org/10.1167/iovs.13-13276 pmid: 24627143
43 H G Bezerra, M A Costa, G Guagliumi, A M Rollins, D I Simon. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035–1046
pmid: 19926041
44 S Ksenofontov, T Vasilenkova. Method of optimizing maximum intensity projection technique for rendering scalar three-dimensional data in static mode, in interactive mode and in real time. Patent of Russian Federation RU 2533055, 2014
45 S Y Ksenofontov. Application of the method of multiple mutual synchronization of parallel computational threads in spectral-domain optical coherent tomography systems. Instruments and Experimental Techniques, 2019, 62(3): 317–323
https://doi.org/10.1134/S0020441219030072
[1] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[2] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[3] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[4] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[5] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[6] Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
[7] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed