Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (4) : 402-408    https://doi.org/10.1007/s12200-019-0960-z
RESEARCH ARTICLE
Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback
Xixuan LIU, Xi TANG, Zhengmao WU, Guangqiong XIA()
School of Physical Science and Technology, Southwest University, Chongqing 400715, China
 Download: PDF(769 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, via autocorrelation function (ACF) and permutation entropy (PE) methods, we numerically investigate the time-delay signature (TDS) characteristics of the chaotic signal output from an optoelectronic oscillator (OEO) after introducing an extra optical feedback loop. The results demonstrate that, for such a chaotic system, both the optoelectronic feedback with a delay time of T1 and the optical feedback with a delay time of T2 contribute to the TDS of generated chaos. The TDS of the chaotic signal should be evaluated within a large time window including T1 and T2 by the strongest peak in the ACF curve of the chaotic signal, and the strongest peak may locate at near T1 or T2. Through mapping the evolution of the TDS in the parameter space of the optical feedback strength and time, certain optimized parameter regions for achieving a chaotic signal with a relatively weak TDS can be determined.

Keywords optoelectronic oscillator (OEO)      chaotic output      time-delay signature (TDS)      optical feedback     
Corresponding Author(s): Guangqiong XIA   
Just Accepted Date: 10 October 2019   Online First Date: 05 December 2019    Issue Date: 31 December 2020
 Cite this article:   
Xixuan LIU,Xi TANG,Zhengmao WU, et al. Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback[J]. Front. Optoelectron., 2020, 13(4): 402-408.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0960-z
https://academic.hep.com.cn/foe/EN/Y2020/V13/I4/402
Fig.1  Schematic diagram of a chaotic signal generation based on an OEO after introducing an extra optical feedback. LD: laser diode; FC: fiber coupler; PC: polarization controller; MZM: Mach-Zehnder modulator; DL: delay line; PD: photodetector; RFA: radio frequency amplifier; VA: variable attenuator
Fig.2  (a) Time series, (b) power spectra, (c) zoom-in power spectra, (d) ACF curves and (e) PE curves of the chaotic signal from an OEO after introducing an extra optical feedback with T1 = 30 ns and T2 = 25 ns, where the first, second, third and fourth rows represent an optical feedback strength K of 0, 0.2, 0.5 and 0.8, respectively
Fig.3  (a) Calculated map of ACF curves for T1 = 30 ns and T2 = 25 ns with K varied from 0 to 1 and the expanded versions of the ACF curve at the vicinities of (b) T2 and (c) T1, respectively
Fig.4  (a) Dependence of s on the optical feedback strength K under P0 = 5 mW; (b) dependence of Koptimal on the laser power P0 and corresponding smin under fixed P0 and Koptimal
Fig.5  Calculated map of s in the parameter space of T2 and K under T1 = 30 ns
Fig.6  Calculated map of s in the parameter space of T1 and T2 under K = 0.55
1 A Argyris, D Syvridis, L Larger, V Annovazzi-Lodi, P Colet, I Fischer, J García-Ojalvo, C R Mirasso, L Pesquera, K A Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066): 343–346
https://doi.org/10.1038/nature04275 pmid: 16292256
2 Y H Hong, M W Lee, J Paul, P S Spencer, K A Shore. GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers. Journal of Lightwave Technology, 2009, 27(22): 5099–5105
https://doi.org/10.1109/JLT.2009.2030344
3 F Chiarello, L Ursini, M Santagiustina. Securing wireless infrared communications through optical chaos. IEEE Photonics Technology Letters, 2011, 23(9): 564–566
https://doi.org/10.1109/LPT.2011.2114334
4 A Uchida, K Amano, M Inoue, K Hirano, S Naito, H Someya, I Oowada, T Kurashige, M Shiki, S Yoshimori, K Yoshimura, P Davis. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2008, 2(12): 728–732
https://doi.org/10.1038/nphoton.2008.227
5 I Kanter, Y Aviad, I Reidler, E Cohen, M Rosenbluh. An optical ultrafast random bit generator. Nature Photonics, 2010, 4(1): 58–61
https://doi.org/10.1038/nphoton.2009.235
6 R Sakuraba, K Iwakawa, K Kanno, A Uchida. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Optics Express, 2015, 23(2): 1470–1490
https://doi.org/10.1364/OE.23.001470 pmid: 25835904
7 Y C Wang, B J Wang, A B Wang. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638
https://doi.org/10.1109/LPT.2008.2002745
8 A B Wang, N Wang, Y B Yang, B J Wang, M J Zhang, Y C Wang. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser. Journal of Lightwave Technology, 2012, 30(21): 3420–3426
https://doi.org/10.1109/JLT.2012.2220755
9 F Y Lin, J M Liu. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics, 2004, 40(6): 815–820
https://doi.org/10.1109/JQE.2004.828237
10 F Y Lin, J M Liu. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991–997
https://doi.org/10.1109/JSTQE.2004.835296
11 W T Wu, Y H Liao, F Y Lin. Noise suppressions in synchronized chaos lidars. Optics Express, 2010, 18(25): 26155–26162
https://doi.org/10.1364/OE.18.026155 pmid: 21164964
12 D Rontani, A Locquet, M Sciamanna, D S Citrin, S Ortin. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE Journal of Quantum Electronics, 2009, 45(7): 879–891
https://doi.org/10.1109/JQE.2009.2013116
13 J G Wu, G Q Xia, Z M Wu. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Optics Express, 2009, 17(22): 20124–20133
https://doi.org/10.1364/OE.17.020124 pmid: 19997236
14 L Zhang, B Pan, G Chen, L Guo, D Lu, L Zhao, W Wang. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports, 2017, 7(1): 45900
https://doi.org/10.1038/srep45900 pmid: 28374860
15 C Masoller. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Physical Review Letters, 2001, 86(13): 2782–2785
https://doi.org/10.1103/PhysRevLett.86.2782 pmid: 11290038
16 D Zhong, G Yang, Z Xiao, Y Ding, J Xi, N Zeng, H Yang. Optical chaotic data-selection logic operation with the fast response for picosecond magnitude. Optics Express, 2019, 27(16): 23357–23367
https://doi.org/10.1364/OE.27.023357 pmid: 31510614
17 J J Chen, Y N Duan, L F Li, Z Q Zhong. Wideband polarization-resolved chaos with time-delay signature suppression in VCSELs subject to dual chaotic optical injections. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 66807–66815
https://doi.org/10.1109/ACCESS.2018.2878734
18 H D I Abarbanel, M B Kennel, L Illing, S Tang, H F Chen, J M Liu. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE Journal of Quantum Electronics, 2001, 37(10): 1301–1311
https://doi.org/10.1109/3.952542
19 J F Liao, J Q Sun. Polarization dynamics and chaotic synchronization in unidirectionally coupled VCSELs subjected to optoelectronic feedback. Optics Communications, 2013, 295: 188–196
https://doi.org/10.1016/j.optcom.2012.12.074
20 R Lang, K Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355
https://doi.org/10.1109/JQE.1980.1070479
21 L Larger, M W Lee, J P Goedgebuer, W Elflein, T Erneux. Chaos in coherence modulation: bifurcations of an oscillator generating optical delay fluctuations. Journal of the Optical Society of America. B, Optical Physics, 2001, 18(8): 1063–1068
https://doi.org/10.1364/JOSAB.18.001063
22 L Larger, J M Dudley. Optoelectronic chaos. Nature, 2010, 465(7294): 41–42
https://doi.org/10.1038/465041a pmid: 20445617
23 Y C Kouomou, P Colet, L Larger, N Gastaud. Chaotic breathers in delayed electro-optical systems. Physical Review Letters, 2005, 95(20): 203903
https://doi.org/10.1103/PhysRevLett.95.203903 pmid: 16384058
24 K E Callan, L Illing, Z Gao, D J Gauthier, E Schöll. Broadband chaos generated by an optoelectronic oscillator. Physical Review Letters, 2010, 104(11): 113901
https://doi.org/10.1103/PhysRevLett.104.113901 pmid: 20366476
25 K Ikeda, K Matsumoto. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, Nonlinear Phenomena, 1987, 29(1-2): 223–235
https://doi.org/10.1016/0167-2789(87)90058-3
26 T E Murphy, A B Cohen, B Ravoori, K R B Schmitt, A V Setty, F Sorrentino, C R S Williams, E Ott, R Roy. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Philosophical Transactions of Royal Society A, 2010, 368(1911): 343–366
https://doi.org/10.1098/rsta.2009.0225 pmid: 20008405
27 M D Prokhorov, V I Ponomarenko, A S Karavaev, B P Bezruchko. Reconstruction of time-delayed feedback systems from time series. Physica D. Nonlinear Phenomena, 2005, 203(3–4): 209–223
https://doi.org/10.1016/j.physd.2005.03.013
28 X Tang, Z M Wu, J G Wu, T Deng, J J Chen, L Fan, Z Q Zhong, G Q Xia. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Optics Express, 2015, 23(26): 33130–33141
https://doi.org/10.1364/OE.23.033130 pmid: 26831980
29 J Hizanidis, S Deligiannidis, A Bogris, D Syvridis. Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators. IEEE Journal of Quantum Electronics, 2010, 46(11): 1642–1649
https://doi.org/10.1109/JQE.2010.2055837
30 X Gao, M Cheng, L Deng, L Liu, H Hu, D Liu. A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dynamics, 2015, 82(1–2): 611–617
https://doi.org/10.1007/s11071-015-2181-3
31 L F Liu, S X Miao, M F Cheng, X J Gao. Two-dimensional coupled electro-optic delayed feedback system with varying parameters. Journal of Modern Optics, 2017, 64(6): 547–554
https://doi.org/10.1080/09500340.2016.1249973
32 H P Hu, S Y Shi, F L Xie. Electro-optic intensity chaotic system with an extra optical feedback. Optics Communications, 2017, 402: 140–146
https://doi.org/10.1016/j.optcom.2017.05.047
33 D Rontani, A Locquet, M Sciamanna, D S Citrin. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Optics Letters, 2007, 32(20): 2960–2962
https://doi.org/10.1364/OL.32.002960 pmid: 17938666
34 C Bandt, B Pompe. Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 2002, 88(17): 174102
https://doi.org/10.1103/PhysRevLett.88.174102 pmid: 12005759
35 M C Soriano, L Zunino, O A Rosso, I Fischer, C R Mirasso. Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE Journal of Quantum Electronics, 2011, 47(2): 252–261
https://doi.org/10.1109/JQE.2010.2078799
36 N Li, W Pan, S Xiang, Q Zhao, L Zhang, P Mu. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy. IEEE Journal of Quantum Electronics, 2014, 50(9): 766–773
37 L Zunino, O A Rosso, M C Soriano. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1250–1257
https://doi.org/10.1109/JSTQE.2011.2145359
38 R Lavrov, M Peil, M Jacquot, L Larger, V Udaltsov, J Dudley. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Physical Review. E, 2009, 80(2): 026207
https://doi.org/10.1103/PhysRevE.80.026207 pmid: 19792231
39 R Lavrov, M Jacquot, L Larger. Nonlocal nonlinear electro-optic Phase dynamics demonstrating 10 Gbs/s chaos communications. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430–1435
https://doi.org/10.1109/JQE.2010.2049987
[1] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[2] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[3] Bin WEI, Zhengmao WU, Tao DENG, Guangqiong XIA. Nonlinear dynamics of 1550 nm VCSELs subject to polarization-preserved optical feedback and orthogonal optical injection[J]. Front Optoelec, 2013, 6(3): 243-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed