Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (3) : 365-373    https://doi.org/10.1007/s12200-020-0947-9
RESEARCH ARTICLE
All-optical pseudo noise sequence generator using a micro-ring resonator
Rajiv KUMAR1(), Ajay KUMAR2, Poonam SINGH3, Niranjan KUMAR4
1. Deptartment of Electronics and Communication Engineering, Indian Institute of Information Technology (IIIT) Ranchi, Ranchi 834010, India
2. Department of Electronics and Communication Engineering, National Institute of Technology (NIT) Jamshedpur, Jamshedpur 831014, India
3. Department of Electronics and Communication Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, India
4. Department of Electrical Engineering, National Institute of Technology (NIT) Jamshedpur, Jamshedpur 831014, India
 Download: PDF(1777 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A scheme for the generation of a pseudo noise (PN) sequence in the optical domain is proposed. The cascaded units of micro-ring resonator (MRR)-based D flip-flop are used to design the device. D flip-flops consist of a single MRR and share the same optical pump signal. Numerical analysis is performed, and simulated results are discussed. The proposed device can be used as a building block for optical computing and for creating an information processing system.

Keywords all-optical      D flip-flop      micro-ring resonator (MRR)      optical communication      pseudo noise (PN) sequence     
Corresponding Author(s): Rajiv KUMAR   
Just Accepted Date: 27 May 2020   Online First Date: 23 June 2020    Issue Date: 30 September 2021
 Cite this article:   
Rajiv KUMAR,Ajay KUMAR,Poonam SINGH, et al. All-optical pseudo noise sequence generator using a micro-ring resonator[J]. Front. Optoelectron., 2021, 14(3): 365-373.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-0947-9
https://academic.hep.com.cn/foe/EN/Y2021/V14/I3/365
Fig.1  Single MRR
Fig.2  (a) Switching phenomenon of MRR. (b) Normalized output power at through and drop ports at the wavelength of 1550 nm. (c) Variation in the phase shift with the average amount of pump power inside the ring resonator
clock D Qn+1
0 X Qn
1 0 0
1 1 1
Tab.1  Truth table of D flip-flop
Fig.3  All-optical clocked D flip-flop using the MRR structure
Fig.4  Simulation result of the D flip-flop
Fig.5  Block diagram of the 4-bit PN sequence generator
clock Q3 Q2 Q1 Q0
0 0 0 0 1
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 1 0 0 1
5 1 1 0 0
6 0 1 1 0
7 1 0 1 1
8 0 1 0 1
9 1 0 1 0
10 1 1 0 1
11 1 1 1 0
12 1 1 1 1
13 0 1 1 1
14 0 0 1 1
15 0 0 0 1
Tab.2  Truth table of 4-bit PN sequence generator where the initial sequence is Q3Q2Q1Q00001
Fig.6  Layout diagram of all-optical 4-bit PN sequence generator
Fig.7  Simulated results describe the output state for the clock pulses 1 to 15. (a) Output state at the 0th clock pulse Q3Q2Q1Q0'0001'. (b) Output state at the 1st clock pulse Q3Q2Q1Q0' 1000'. (c) Output state at the 2nd clock pulse Q3Q2Q1Q0'0100'. (d) Output state at the 3rd clock pulse Q3Q2Q1Q0' 0010'. (e) Output state at the 4th clock pulse Q3Q2Q1Q0'1001'.(f) Output state at the 5th clock pulseQ3Q2Q1Q0' 1100'. (g) Output state at the 6th clock pulse Q3Q2Q1Q0'0110'.(h) Output state at the 7th clock pulse Q3 Q2Q 1 Q0'1011'.(i) Output state at the 8th clock pulseQ3Q2Q1Q0' 0101'. (j) Output state at the 9th clock pulse Q3Q2Q1Q0'1010'.(k) Output state at the 10th clock pulse Q3Q2Q1Q0' 1101'. (l) Output state at the 11th clock pulse Q3Q2Q1Q0'1110'. (m) Output state at the 12th clock pulse Q3Q2Q1Q0' 1111'. (n) Output state at the 13th clock pulse Q3Q2Q1Q0'0111'. (o) Output state at the 14th clock pulse Q3Q2Q1Q0' 0011'. (p) Output state at the 15th clock pulse Q3Q2Q1Q0'0001'
1 S M Haas, J H Shapiro. Capacity of wireless optical communications. IEEE Journal on Selected Areas in Communications, 2003, 21(8): 1346–1357
https://doi.org/10.1109/JSAC.2003.816618
2 R Maia Borges, A Cerqueira Sodre Junior. Reconfigurable optical-wireless communications for future generations. IEEE Latin America Transactions, 2015, 13(11): 3580–3584
https://doi.org/10.1109/TLA.2015.7387934
3 A Chaaban, J M Morvan, M S Alouini. Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Transactions on Communications, 2016, 64(3): 1176–1191
https://doi.org/10.1109/TCOMM.2016.2524569
4 R Y Chen, Z Y Yang. CMOS transimpedance amplifier for gigabit-per-second optical wireless communications. IEEE Transactions on Circuits and Wystems. II: Express Briefs, 2016, 63(5): 418–422
https://doi.org/10.1109/TCSII.2015.2505264
5 J A Anguita, I B Djordjevic, M A Neifeld, B V Vasic. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. Journal of Optical Networking, 2005, 4(9): 586–601
https://doi.org/10.1364/JON.4.000586
6 J Niehusmann, A Vörckel, P H Bolivar, T Wahlbrink, W Henschel, H Kurz. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics Letters, 2004, 29(24): 2861–2863
https://doi.org/10.1364/OL.29.002861 pmid: 15645805
7 W Bogaerts, P De Heyn, T Van Vaerenbergh, K De Vos, S Kumar Selvaraja, T Claes, P Dumon, P Bienstman, D Van Thourhout, R Baets. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
8 R Grover, P P Absil, V Van, J V Hryniewicz, B E Little, O King, L C Calhoun, F G Johnson, P T Ho. Vertically coupled GaInAsP--InP microring resonators. Optics Letters, 2001, 26(8): 506–508
https://doi.org/10.1364/OL.26.000506 pmid: 18040367
9 Y Ding, H Ou, J Xu, M Xiong, Y An, H Hu, M Galili, A L Riesgo, J Seoane, K Yvind, L K Oxenløwe, X Zhang, D Huang, C Peucheret. Linear all-optical signal processing using silicon micro-ring resonators. Frontiers of Optoelectronics, 2016, 9(3): 362–376
https://doi.org/10.1007/s12200-016-0553-z
10 M Lipson. Guiding, modulating, and emitting light on silicon-challenges and opportunities. Journal of Lightwave Technology, 2005, 23(12): 4222–4238
https://doi.org/10.1109/JLT.2005.858225
11 H Xiao, D Li, Z Liu, X Han, W Chen, T Zhao, Y Tian, J Yang. Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics, 2018, 7(4): 727–733
12 K Ishida. Synchronous pseudo-noise code sequence generation circuit. U.S. Patent 5519736, 1996
13 Q Xu, M Lipson. All-optical logic based on silicon micro-ring resonators. Optics Express, 2007, 15(3): 924–929
https://doi.org/10.1364/OE.15.000924 pmid: 19532318
14 J H Lee, I Song, S R Park, J Lee. Rapid acquisition of PN sequences with a new decision logic. IEEE Transactions on Vehicular Technology, 2004, 53(1): 49–60
https://doi.org/10.1109/TVT.2003.819813
15 L Yang, C Guo, W Zhu, L Zhang, C Sun. Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photonics Technology Letters, 2015, 27(8): 809–812
16 Y Zhao, X Wang, D Gao, J Dong, X Zhang. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
https://doi.org/10.1007/s12200-018-0846-5
17 B E Little, S T Chu, W Pan, Y Kokubun. Microring resonator arrays for VLSI photonics. IEEE Photonics Technology Letters, 2000, 12(3): 323–325
https://doi.org/10.1109/68.826928
18 C Condo, W J Gross. Pseudo-random Gaussian distribution through optimised LFSR permutations. Electronics Letters, 2015, 51(25): 2098–2100
https://doi.org/10.1049/el.2015.3418
19 D G. Rabus Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP /InP. Dissertation for the Doctoral Degree. Berlin: Technische Universität Berlin, 2002
20 J K Rakshit, T Chattopadhyay, J N Roy. Design of ring resonator based all-optical switch for logic and arithmetic operations–a theoretical study. Optik, 2013, 124(23): 6048–6057
https://doi.org/10.1016/j.ijleo.2013.04.075
21 G K Bharti, J K Rakshit. Design and performance analysis of high speed optical binary code converter using micro-ring resonator. Fiber and Integrated Optics, 2018, 37(2): 103–121
https://doi.org/10.1080/01468030.2018.1430872
22 T Houbavlis, K E Zoiros, G Kanellos, C Tsekrekos. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer. Optics Communications, 2004, 232(1–6): 179–199
https://doi.org/10.1016/j.optcom.2003.12.062
23 J K Rakshit, J N Roy. Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photonic Network Communications, 2017, 34(1): 84–92
https://doi.org/10.1007/s11107-016-0664-x
24 J K Rakshit, J N Roy. Design of all-optical universal shift register using nonlinear microring resonators. Journal of Computational Electronics, 2016, 15(4): 1450–1461
https://doi.org/10.1007/s10825-016-0897-z
25 J K Rakshit, J N Roy, T Chattopadhyay. A theoretical study of all-optical clocked D flip flop using single micro-ring resonator. Journal of Computational Electronics, 2014, 13(1): 278–286
https://doi.org/10.1007/s10825-013-0519-y
26 M Asghari, I H White, R V Penty. Wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 1997, 15(7): 1181–1190
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[3] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[4] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[5] Qingshan JIANG, Ciling ZENG, Fengqiang GU, Ming ZHAO. Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance[J]. Front. Optoelectron., 2017, 10(2): 174-179.
[6] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[9] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[10] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[11] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[12] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[13] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[14] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[15] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed