Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (3) : 360-364    https://doi.org/10.1007/s12200-020-0986-2
RESEARCH ARTICLE
Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources
Meng YE(), Yong WANG, Peng GAO, Likun XU, Guanjin HUANG
CSG Power Generation Company Information Communication Branch, Guangzhou 510070, China
 Download: PDF(546 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hong–Ou–Mandel (HOM) interference is one of the most important experimental phenomena in quantum optics. It has drawn considerable attention with respect to quantum cryptography and quantum communication because of the advent of the measurement device independent (MDI) quantum key distribution (QKD) protocol. Here, we realize HOM interference, having a visibility of approximately 38.1%, using two independent heralded single-photon sources (HSPSs). The HOM interference between two independent HSPSs is a core technology for realizing the long-distance MDI QKD protocol, the quantum coin-tossing protocol, and other quantum cryptography protocols.

Keywords Hong–Ou–Mandel (HOM)      quantum cryptography      quantum key distribution (QKD)     
Corresponding Author(s): Meng YE   
Online First Date: 08 July 2020    Issue Date: 30 September 2021
 Cite this article:   
Meng YE,Yong WANG,Peng GAO, et al. Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources[J]. Front. Optoelectron., 2021, 14(3): 360-364.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-0986-2
https://academic.hep.com.cn/foe/EN/Y2021/V14/I3/360
Fig.1  An HOM interference scheme containing two PBSs. The two photons are polarized as |H and |V. PBS, polarization beam splitter; HWP, half-wave plate
Fig.2  Setup of HOM interference experiment. HWP, half-wave plate; LBO, LiB3O5; BBO, β–BaB2O2; BPIF, bandpass interference filter; H1, H2, half-wave plates for polarization compensation; PBS, polarization beam splitter; SPD, single-photon detector
Fig.3  HOM dip in our experiment. The solid line denotes the Gaussian fitting. B represents the black fit curve and D represents the red fit curve in the figure. The fitting formula y is a Gaussian fitting function. A and w are parameters in the formula
1 N Gisin, G Ribordy, W Tittel, H Zbinden. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145–195
https://doi.org/10.1103/RevModPhys.74.145
2 D Bouwmeester, J W Pan, K Mattle, M Eibl, H Weinfurter, A Zeilinger. Experimental quantum teleportation. Nature, 1997, 390(6660): 575–579
https://doi.org/10.1038/37539
3 H J Briegel, W Dür, J I Cirac, P Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 1998, 81(26): 5932–5935
4 E Knill, R Laflamme, G J Milburn. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52
https://doi.org/10.1038/35051009 pmid: 11343107
5 C K Hong, Z Y Ou, L Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046
https://doi.org/10.1103/PhysRevLett.59.2044 pmid: 10035403
6 J G Rarity, P R Tapster, R Loudon. Non-classical interference between independent sources. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(7): S171–S175
https://doi.org/10.1088/1464-4266/7/7/007
7 R Kaltenbaek, B Blauensteiner, M Zukowski, M Aspelmeyer, A Zeilinger. Experimental interference of independent photons. Physical Review Letters, 2006, 96(24): 240502
8 J Beugnon, M P Jones, J Dingjan, B Darquié, G Messin, A Browaeys, P Grangier. Quantum interference between two single photons emitted by independently trapped atoms. Nature, 2006, 440(7085): 779–782
https://doi.org/10.1038/nature04628 pmid: 16598253
9 A J Bennett, R B Patel, C A Nicoll, D A Ritchie, A J Shields. Interference of dissimilar photon sources. Nature Physics, 2009, 5(10): 715–717
https://doi.org/10.1038/nphys1373
10 C H Bennet, G Brassard. Quantum Cryptography: Public-Key Distribution and Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179
11 C M Zhang, M Li, J Z Huang, H W Li, F Y Li, C Wang, Z Q Yin, W Chen, Z F Han, P Treeviriyanupab, K Sripimanwat. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chinese Physics B, 2014, 23(9): 090310
https://doi.org/10.1088/1674-1056/23/9/090310
12 C M Zhang, X T Song, P Treeviriyanupab, M Li, C Wang, H W Li, Z Q Yin, W Chen, Z F Han. Delayed error verification in quantum key distribution. Chinese Science Bulletin, 2014, 59(23): 2825–2828
https://doi.org/10.1007/s11434-014-0446-8
13 M Li, T Patcharapong, C M Zhang, Z Q Yin, W Chen, Z F Han. Efficient error estimation in quantum key distribution. Chinese Physics B, 2015, 24(1): 010302
https://doi.org/10.1088/1674-1056/24/1/010302
14 S Wang, D Y He, Z Q Yin, F Y Lu, C H Cui, W Chen, Z Zhou, G C Guo, Z F Han. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Physical Review X, 2019, 9(2): 021046
https://doi.org/10.1103/PhysRevX.9.021046
15 Y P Li, W Chen, F X Wang, Z Q Yin, L Zhang, H Liu, S Wang, D Y He, Z Zhou, G C Guo, Z F Han. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44(18): 4523–4526
https://doi.org/10.1364/OL.44.004523 pmid: 31517921
16 F Y Lu, Z Q Yin, C H Cui, G J Fan-Yuan, R Wang, S Wang, W Chen, D Y He, W Huang, B J Xu, G C Guo, Z F Han. Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100(2): 022306
https://doi.org/10.1103/PhysRevA.100.022306
17 H K Lo, M Curty, B Qi. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503
https://doi.org/10.1103/PhysRevLett.108.130503 pmid: 22540686
18 T Ferreira da Silva, D Vitoreti, G B Xavier, G C do Amaral, G P Temporão, J P von der Weid. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013, 88(5): 052303
https://doi.org/10.1103/PhysRevA.88.052303
19 A Rubenok, J A Slater, P Chan, I Lucio-Martinez, W Tittel. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical Review Letters, 2013, 111(13): 130501
https://doi.org/10.1103/PhysRevLett.111.130501 pmid: 24116757
20 Y Liu, T Y Chen, L J Wang, H Liang, G L Shentu, J Wang, K Cui, H L Yin, N L Liu, L Li, X Ma, J S Pelc, M M Fejer, C Z Peng, Q Zhang, J W Pan. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, 111(13): 130502
https://doi.org/10.1103/PhysRevLett.111.130502 pmid: 24116758
21 Z Tang, Z Liao, F Xu, B Qi, L Qian, H K Lo. Experimental demonstration of polarization encoding measurement-device- independent quantum key distribution. Physical Review Letters, 2014, 112(19): 190503
https://doi.org/10.1103/PhysRevLett.112.190503 pmid: 24877922
22 H Chen, X B An, J Wu, Z Q Yin, S Wang, W Chen, Z F Han. Hong–Ou–Mandel interference with two independent weak coherent states. Chinese Physics B, 2016, 25(2): 020305
https://doi.org/10.1088/1674-1056/25/2/020305
23 Q Wang, W Chen, G Xavier, M Swillo, T Zhang, S Sauge, M Tengner, Z F Han, G C Guo, A Karlsson. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Physical Review Letters, 2008, 100(9): 090501
https://doi.org/10.1103/PhysRevLett.100.090501 pmid: 18352685
24 M Zukowski, A Zeilinger, H Weinfurter. Entangling photons radiated by independent pulsed sourcesa. Annals of the New York Academy of Sciences, 1995, 755(1): 91–102
https://doi.org/10.1111/j.1749-6632.1995.tb38959.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed