Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (2) : 91-113    https://doi.org/10.1007/s12200-020-1011-5
REVIEW ARTICLE
Review of fabrication methods of large-area transparent graphene electrodes for industry
Petri MUSTONEN(), David M. A. MACKENZIE, Harri LIPSANEN
Department of Electronics and Nanoengineering, Aalto University, Aalto FI-00076, Finland
 Download: PDF(837 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419.

Keywords transparent electrodes      graphene      liquid exfoliation      chemical vapor deposition (CVD)     
Corresponding Author(s): Petri MUSTONEN   
Online First Date: 13 July 2020    Issue Date: 21 July 2020
 Cite this article:   
Petri MUSTONEN,David M. A. MACKENZIE,Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1011-5
https://academic.hep.com.cn/foe/EN/Y2020/V13/I2/91
Fig.1  (a) A possible route for cavitation-bubble induced liquid exfoliation of graphite to graphene. Adapted from Ref. [32]. (b) High-speed shear mixing setup with a rotor, stator and mixing head visible. Adapted from Ref. [33]
Fig.2  (a) Reduced graphene oxide spray-coated on a 4-inch quartz wafer. Adapted from Ref. [66]. (b) Rod-coated room-temperature reduced graphene oxide transferred on a flexible PET substrate. Adapted from Ref. [69]. (c) Scheme for Langmuir-Blodgett method where a graphene film forms at the air-water-interface. The substrate is pulled upwards while the film is under steady compression. The film adheres to the substrate as it is pulled, and a monolayer transfer is achieved. Adapted from Ref. [41]
Rs/(Ω·sq−1) T/% σ DC/σOP annealing/°C exfoliation method Ref.
100 90 35 minimum industry requirment [70]
22500 62 0.03 250 surfactant+ sonication [71]
40000 78 0.036 400a) GO+ sonication [68]
5100 42 0.069 250 sonication [35]
6000 60 0.11 400a) GO+ sonication [64]
6000 70 0.16 surfactant+ sonication [40]
1500 44 0.25 shear [52]
3200 70 0.30 600 electrochemical [58]
4000 76 0.32 500 surfactant+ sonication [72]
5000 80 0.32 800 surfactant+ GO+ sonication [65]
1000 47 0.41 500 surfactant+ sonication [72]
1680 65 0.46 GO+ sonication [69]
4000 82 0.56 1100 GO+ sonication [68]
2000 74 0.58 400+1100a) GO+ sonication [64]
550 48 0.78 600 electrochemical [58]
1700 75 0.72 GO [67]
2200 84 0.94 1100 GO+ sonication [66]
930 75 1.3 300 intercalation [41]
668 80 2.39 350 surfactant+ sonication [50]
1100 89 2.86 700 GO [67]
440 76 2.9 400 electrochemical [55]
600 86 4.01 400+1100 intercalation+ GO [15]
778 90 4.5 1000 surfactant+ sonication [48]
330 87 4.8 300 electrochemical [56]
459 90 7.59 400+1100b) intercalation+ GO [15]
260 85 8.6 350 shear [43]
657 96 13.9 450 electrochemical [54]
210a) 96 43.5 450 electrochemical [54]
Tab.1  Summary of liquid exfoliated graphene based transparent electrodes, where Rs,?T, and σDC/ σOP refer to sheet resistance, transmittance (at 550 nm) and figure of merit, respectively. Annealing column mentions whether high-temperature annealing is done and at what temperature. Exfoliation method explains which method is used and whether surfactants are used; if only GO is mentioned, then no agitation is used for exfoliation
Fig.3  (a) Schematic picture of a horizontal quartz furnace where gases flow laterally over the substrate in a reaction zone surrounded by heating elements. (b) Simplified scheme of graphene growth in CVD. Hydrocarbons adsorb on the surface (1), dehydrogenate (2), nucleate and grow (3), diffuse to bulk if high carbon soluble substrate (4), diffuse out (5), and segregate (6). Adapted from Ref. [84]
Fig.4  Defect healing scheme by Park et al., where gold nanoparticles are electroplated onto defected areas, increasing their conductivity. Adapted from Ref. [109]. (a) Schematic figure on where the gold nanoparticles coalesce after electroplating process. (b) Electroplating scheme of the gold nanoparticles
Fig.5  (a) Schematic of electrical injection of nickel atoms as p-type dopant by Chae et al., made with an AlN buffer layer. Adapted from Ref. [143]. (b) Chlorine doping of graphene in ICP by Pham et al., with two metal meshes to confine low energy radicals and protect the graphene layer. Adapted from Ref. [16]
Rs/(Ω·sq−1) T/% σ DC/σOP Rchange/% substrate dopant (n/p) Ref.
100 90 35 minimum industry requirement [70]
3600 85.7 0.66 flexible glass [134]a)
1645 81 1.03 quartz [104]
1300 80 1.24 quartz [136]a)
1170 88 2.44 PET [103]
661 83.7 3.09 glass [135]a)
600 86 4.01 37 SiO2 (Rs)/glass (T) Au2S (p) [139]
230 71 4.39 PET [145]
280 76 4.58 quartz [98]
700 90 4.98 SiO2 (Rs)/glass (T) [146]
350 83b) 5.52 pyridine (n)c) [147]
445 87 5.87 47 SiO2 (Rs)/PET (T) AuCl3 (p) [148]
820 93 6.22 14 SiO2 (Rs)/glass (T) Au(OH)3 (p) [139]
1150 97 10.7 glass [149]
200 86.7 12.7 87 EVA+PET HNO3 (p) [150]
530 95 13.7 44 SiO2 (Rs)/glass (T) AuBr3 (p) [139]
350 93 14.6 52 RhCl3 (p) [140]
150 87 17.4 66 SiO2 (Rs)/PET (T) AuCl3 (p) [148]
220 91 17.8 70 AuCl3 (p) [140]
500 96 18.3 32 HNO3 (p) [140]
118d) 84.9 18.7 56 glass CsF (n) [151]
129 88 22.1 70 SiO2 (Rs)/sapphire (T) TFSA (p)e) [152]
550 97 22.3 PVDFf) [153]
380 96 24.1 42 glass hydrazine (n) [141]
618 97.5 24.1 glass [137]a)
500 97.1 25.4 quartz [154]
299 95.7 28.4 62 SiO2 (Rs)/quartz (T) HNO3 (p) [105]
81 85.6 29 PESg) [138]a)
300 96 30.5 68 SiO2 (Rs)/glass (T) AuCl3 (p) [139]
216 95 33.6 70 quartz Ni (p)h) [143]
367 97.3 37.3 PET [101]
215 96 42.5 44 SiO2 (Rs)/glass (T) Au NP (p) [109]
320 98 58.0 cellulose [107]
50 89 62.8 76 glass hydrazine (n) [141]
305 98.2 67.7 49 PET Cl plasma (p) [16]
30d) 90 116 25 SiO2 (Rs)/PET (T) HNO3 (p) [106]
118i) 97.3 116 80 PET Cl plasma (p) [16]
115 97.5 135 50 SiO2 (Rs)/PET (T) HNO3 (p) [106]
25 96.5 419 83 parylene-C HNO3 (p) [108]
Tab.2  Summary of different graphene based transparent electrodes, where Rs, T, σDC/ σOP and Rchange refer to sheet resistance, transmittance (at 550 nm unless otherwise specified), figure of merit and decrease of sheet resistance due to doping, respectively. Substrate refers to the substrate where Rs and T are measured on, if two substrates are given, then their corresponding measurements are given in brackets after the substrate
1 K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
2 R Peierls. Quelques propriétés typiques des corps solides. Annales de l'Institut Henri Poincaré, 1935, 5(3): 177–222
3 L D Landau. On the theory of phase transitions. Ukrainian Journal of Physical, 1937, 11: 19–32
4 N D Mermin. Crystalline order in two dimensions. Physical Review, 1968, 176(1): 250–254
https://doi.org/10.1103/PhysRev.176.250
5 D R Nelson, L Peliti. Fluctuations in membranes with crystalline and hexatic order. Journal de Physique (Paris), 1988, 49(1): 139
https://doi.org/10.1051/jphys:01988004901013900
6 L Banszerus, M Schmitz, S Engels, M Goldsche, K Watanabe, T Taniguchi, B Beschoten, C Stampfer. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters, 2016, 16(2): 1387–1391
https://doi.org/10.1021/acs.nanolett.5b04840 pmid: 26761190
7 A S Mayorov, R V Gorbachev, S V Morozov, L Britnell, R Jalil, L A Ponomarenko, P Blake, K S Novoselov, K Watanabe, T Taniguchi, A K Geim. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 2011, 11(6): 2396–2399
https://doi.org/10.1021/nl200758b pmid: 21574627
8 L Wang, I Meric, P Y Huang, Q Gao, Y Gao, H Tran, T Taniguchi, K Watanabe, L M Campos, D A Muller, J Guo, P Kim, J Hone, K L Shepard, C R Dean. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614–617
https://doi.org/10.1126/science.1244358 pmid: 24179223
9 E H Hwang, S Adam, S D Sarma. Carrier transport in two-dimensional graphene layers. Physical Review Letters, 2007, 98(18): 186806
https://doi.org/10.1103/PhysRevLett.98.186806 pmid: 17501596
10 G H Lee, R C Cooper, S J An, S Lee, A van der Zande, N Petrone, A G Hammerberg, C Lee, B Crawford, W Oliver, J W Kysar, J Hone. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 2013, 340(6136): 1073–1076
https://doi.org/10.1126/science.1235126 pmid: 23723231
11 J Xu, G Yuan, Q Zhu, J Wang, S Tang, L Gao. Enhancing the strength of graphene by a denser grain boundary. ACS Nano, 2018, 12(5): 4529–4535
https://doi.org/10.1021/acsnano.8b00869 pmid: 29659251
12 C Lee, X Wei, J W Kysar, J Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
13 R R Nair, P Blake, A N Grigorenko, K S Novoselov, T J Booth, T Stauber, N M R Peres, A K Geim. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965 pmid: 18388259
14 A A Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064 pmid: 21778997
15 Q Zheng, W H Ip, X Lin, N Yousefi, K K Yeung, Z Li, J K Kim. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 2011, 5(7): 6039–6051
https://doi.org/10.1021/nn2018683 pmid: 21692470
16 V P Pham, A Mishra, G Young Yeom. The enhancement of Hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing. RSC Advances, 2017, 7(26): 16104–16108
https://doi.org/10.1039/C7RA01330B
17 S Suzuki, M Yoshimura. Chemical stability of graphene coated silver substrates for surface-enhanced raman scattering. Scientific Reports, 2017, 7(1): 14851
https://doi.org/10.1038/s41598-017-14782-2 pmid: 29093553
18 S Pisana, M Lazzeri, C Casiraghi, K S Novoselov, A K Geim, A C Ferrari, F Mauri. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials, 2007, 6(3): 198–201
https://doi.org/10.1038/nmat1846 pmid: 17293849
19 K S Novoselov, Z Jiang, Y Zhang, S V Morozov, H L Stormer, U Zeitler, J C Maan, G S Boebinger, P Kim, A K Geim. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201 pmid: 17303717
20 Y Zhang, Y W Tan, H L Stormer, P Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204
https://doi.org/10.1038/nature04235 pmid: 16281031
21 K I Bolotin, F Ghahari, M D Shulman, H L Stormer, P Kim. Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462(7270): 196–199
https://doi.org/10.1038/nature08582 pmid: 19881489
22 Z Qiao, S A Yang, W Feng, W K Tse, J Ding, Y Yao, J Wang, Q Niu. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(16): 161414
https://doi.org/10.1103/PhysRevB.82.161414
23 D Levy, E Castellón. Transparent Conductive Materials: Materials, Synthesis, Characterization, Applications. New York: John Wiley & Sons, 2018
24 Y Hu, X Diao, C Wang, W Hao, T Wang. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004, 75(2): 183–188
https://doi.org/10.1016/j.vacuum.2004.01.081
25 K Alzoubi, M M Hamasha, S Lu, B Sammakia. Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 2011, 7(11): 593–600
https://doi.org/10.1109/JDT.2011.2151830
26 H G Im, S Jeong, J Jin, J Lee, D Y Youn, W T Koo, S B Kang, H J Kim, J Jang, D Lee, H K Kim, I D Kim, J Y Lee, B S Bae. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8(6): e282
https://doi.org/10.1038/am.2016.85
27 S H Park, S J Lee, J H Lee, J Kal, J Hahn, H K Kim. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics, 2016, 30: 112–121
https://doi.org/10.1016/j.orgel.2015.12.009
28 K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
29 K S Suslick. Sonochemistry. Science, 1990, 247(4949): 1439–1445
https://doi.org/10.1126/science.247.4949.1439 pmid: 17791211
30 M Yi, Z Shen. A review on mechanical exfoliation for the scalable production of grapheme. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
https://doi.org/10.1039/C5TA00252D
31 X Chen, J F Dobson, C L Raston. Vortex fluidic exfoliation of graphite and boron nitride. Chemical Communications (Cambridge), 2012, 48(31): 3703–3705
https://doi.org/10.1039/c2cc17611d pmid: 22314550
32 K R Paton, E Varrla, C Backes, R J Smith, U Khan, A O’Neill, C Boland, M Lotya, O M Istrate, P King, T Higgins, S Barwich, P May, P Puczkarski, I Ahmed, M Moebius, H Pettersson, E Long, J Coelho, S E O’Brien, E K McGuire, B M Sanchez, G S Duesberg, N McEvoy, T J Pennycook, C Downing, A Crossley, V Nicolosi, J N Coleman. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13(6): 624–630
https://doi.org/10.1038/nmat3944 pmid: 24747780
33 Z Lin, P S Karthik, M Hada, T Nishikawa, Y Hayashi. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel, Switzerland), 2017, 7(6): 125
https://doi.org/10.3390/nano7060125 pmid: 28555015
34 P Blake, P D Brimicombe, R R Nair, T J Booth, D Jiang, F Schedin, L A Ponomarenko, S V Morozov, H F Gleeson, E W Hill, A K Geim, K S Novoselov. Graphene-based liquid crystal device. Nano Letters, 2008, 8(6): 1704–1708
https://doi.org/10.1021/nl080649i pmid: 18444691
35 Y Hernandez, V Nicolosi, M Lotya, F M Blighe, Z Sun, S De, I T McGovern, B Holland, M Byrne, Y K Gun’Ko, J J Boland, P Niraj, G Duesberg, S Krishnamurthy, R Goodhue, J Hutchison, V Scardaci, A C Ferrari, J N Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
https://doi.org/10.1038/nnano.2008.215 pmid: 18772919
36 J S Bunch, Y Yaish, M Brink, K Bolotin, P L McEuen. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Letters, 2005, 5(2): 287–290
https://doi.org/10.1021/nl048111+ pmid: 15794612
37 Y Hernandez, M Lotya, D Rickard, S D Bergin, J N Coleman. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26(5): 3208–3213
https://doi.org/10.1021/la903188a pmid: 19883090
38 S D Bergin, V Nicolosi, P V Streich, S Giordani, Z Sun, A H Windle, P Ryan, N P P Niraj, Z T T Wang, L Carpenter, W J Blau, J J Boland, J P Hamilton, J N Coleman. Towards solutions of single-walled carbon nanotubes in common solvents. Advanced Materials, 2008, 20(10): 1876–1881
https://doi.org/10.1002/adma.200702451
39 J N Coleman. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 2009, 19(23): 3680–3695
https://doi.org/10.1002/adfm.200901640
40 Y T Liang, M C Hersam. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. Journal of the American Chemical Society, 2010, 132(50): 17661–17663
https://doi.org/10.1021/ja107661g pmid: 21114312
41 K H Park, B H Kim, S H Song, J Kwon, B S Kong, K Kang, S Jeon. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Letters, 2012, 12(6): 2871–2876
https://doi.org/10.1021/nl3004732 pmid: 22616737
42 T Tomašević-Ilić, J Pešić, I Milošević, J Vujin, A Matković, M Spasenović, R Gajić. Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48(6): 319
https://doi.org/10.1007/s11082-016-0591-1
43 S Majee, M Song, S L Zhang, Z B Zhang. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
https://doi.org/10.1016/j.carbon.2016.02.013
44 R Narayan, S O Kim. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2(1): 20
https://doi.org/10.1186/s40580-015-0050-x pmid: 28191406
45 N Liu, F Luo, H Wu, Y Liu, C Zhang, J Chen. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 2008, 18(10): 1518–1525
https://doi.org/10.1002/adfm.200700797
46 U Khan, A O’Neill, M Lotya, S De, J N Coleman. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871
https://doi.org/10.1002/smll.200902066 pmid: 20209652
47 J Li, H Yan, D Dang, W Wei, L Meng. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535: 92–99
https://doi.org/10.1016/j.jcis.2018.09.094 pmid: 30286311
48 M Zhang, R R Parajuli, D Mastrogiovanni, B Dai, P Lo, W Cheung, R Brukh, P L Chiu, T Zhou, Z Liu, E Garfunkel, H He. Production of graphene sheets by direct dispersion with aromatic healing agents. Small, 2010, 6(10): 1100–1107
https://doi.org/10.1002/smll.200901978 pmid: 20449847
49 L Liu, K T Rim, D Eom, T F Heinz, G W Flynn. Direct observation of atomic scale graphitic layer growth. Nano Letters, 2008, 8(7): 1872–1878
https://doi.org/10.1021/nl0804046 pmid: 18563944
50 T T Tung, J Yoo, F K Alotaibi, M J Nine, R Karunagaran, M Krebsz, G T Nguyen, D N H Tran, J F Feller, D Losic. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Applied Materials & Interfaces, 2016, 8(25): 16521–16532
https://doi.org/10.1021/acsami.6b04872 pmid: 27268515
51 S Majee, M Song, S L Zhang, Z B Zhang. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
https://doi.org/10.1016/j.carbon.2016.02.013
52 D W Shin, M D Barnes, K Walsh, D Dimov, P Tian, A I S Neves, C D Wright, S M Yu, J B Yoo, S Russo, M F Craciun. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Advanced Materials, 2018, 30(39): 1802953
https://doi.org/10.1002/adma.201802953 pmid: 30141202
53 T Fukushima, T Aida. Ionic liquids for soft functional materials with carbon nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13(18): 5048–5058
https://doi.org/10.1002/chem.200700554 pmid: 17516613
54 C Y Su, A Y Lu, Y Xu, F R Chen, A N Khlobystov, L J Li. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011, 5(3): 2332–2339
https://doi.org/10.1021/nn200025p pmid: 21309565
55 J Liu, M Notarianni, G Will, V T Tiong, H Wang, N Motta. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 2013, 29(43): 13307–13314
https://doi.org/10.1021/la403159n pmid: 24089707
56 K Parvez, Z S Wu, R Li, X Liu, R Graf, X Feng, K Müllen. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 2014, 136(16): 6083–6091
https://doi.org/10.1021/ja5017156 pmid: 24684678
57 Y Zhang, Y Xu. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials, 2019, 29(37): 1902171
https://doi.org/10.1002/adfm.201902171
58 S Roscher, R Hoffmann, M Prescher, P Knittel, O Ambacher. High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Advances, 2019, 9: 29305–29311
59 W S Jr Hummers, R E Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
60 M Hirata, T Gotou, S Horiuchi, M Fujiwara, M Ohba. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937
https://doi.org/10.1016/S0008-6223(04)00444-0
61 L Shahriary, A A Athawale. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2014, 2(1): 58–63
62 D R Dreyer, A D Todd, C W Bielawski. Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 2014, 43(15): 5288–5301
https://doi.org/10.1039/C4CS00060A pmid: 24789533
63 C Mattevi, G Eda, S Agnoli, S Miller, K A Mkhoyan, O Celik, D Mastrogiovanni, G Granozzi, E Garfunkel, M Chhowalla. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 2009, 19(16): 2577–2583
https://doi.org/10.1002/adfm.200900166
64 S J Wang, Y Geng, Q Zheng, J K Kim. Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48(6): 1815–1823
https://doi.org/10.1016/j.carbon.2010.01.027
65 J Geng, H T Jung. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. Journal of Physical Chemistry C, 2010, 114(18): 8227–8234
https://doi.org/10.1021/jp1008779
66 V H Pham, T V Cuong, S H Hur, E W Shin, J S Kim, J S Chung, E J Kim. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48(7): 1945–1951
https://doi.org/10.1016/j.carbon.2010.01.062
67 M Alahbakhshi, A Fallahi, E Mohajerani, M R Fathollahi, F A Taromi, M Shahinpoor. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials, 2017, 64: 366–375
https://doi.org/10.1016/j.optmat.2017.01.008
68 H A Becerril, J Mao, Z Liu, R M Stoltenberg, Z Bao, Y Chen. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470
https://doi.org/10.1021/nn700375n pmid: 19206571
69 J Wang, M Liang, Y Fang, T Qiu, J Zhang, L Zhi. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 2012, 24(21): 2874–2878
https://doi.org/10.1002/adma.201200055 pmid: 22539114
70 S De, J N Coleman. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
https://doi.org/10.1021/nn100343f pmid: 20384321
71 M Lotya, Y Hernandez, P J King, R J Smith, V Nicolosi, L S Karlsson, F M Blighe, S De, Z Wang, I T McGovern, G S Duesberg, J N Coleman. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131(10): 3611–3620
https://doi.org/10.1021/ja807449u pmid: 19227978
72 S De, P J King, M Lotya, A O’Neill, E M Doherty, Y Hernandez, G S Duesberg, J N Coleman. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458–464
https://doi.org/10.1002/smll.200901162 pmid: 19859943
73 C T Au, C F Ng, M S Liao. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. Journal of Catalysis, 1999, 185(1): 12–22
https://doi.org/10.1006/jcat.1999.2498
74 G Nandamuri, S Roumimov, R Solanki. Chemical vapor deposition of graphene films. Nanotechnology, 2010, 21(14): 145604
https://doi.org/10.1088/0957-4484/21/14/145604 pmid: 20215663
75 H An, W J Lee, J Jung. Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011, 11(4): S81–S85
https://doi.org/10.1016/j.cap.2011.03.077
76 G W Cushing, V Johánek, J K Navin, I Harrison. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. Journal of Physical Chemistry C, 2015, 119(9): 4759–4768
https://doi.org/10.1021/jp508177k
77 G Imamura, K Saiki. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. Journal of Physical Chemistry C, 2011, 115(20): 10000–10005
https://doi.org/10.1021/jp202128f
78 L Zhao, K T Rim, H Zhou, R He, T F Heinz, A Pinczuk, G W Flynn, A N Pasupathy. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications, 2011, 151(7): 509–513
https://doi.org/10.1016/j.ssc.2011.01.014
79 Z Sun, Z Yan, J Yao, E Beitler, Y Zhu, J M Tour. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552
https://doi.org/10.1038/nature09579 pmid: 21068724
80 C Virojanadara, M Syväjarvi, R Yakimova, L I Johansson, A A Zakharov, T Balasubramanian. Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B: Condensed Matter and Materials Physics, 2008, 78(24): 245403
https://doi.org/10.1103/PhysRevB.78.245403
81 J K Wassei, M Mecklenburg, J A Torres, J D Fowler, B C Regan, R B Kaner, B H Weiller. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small, 2012, 8(9): 1415–1422
https://doi.org/10.1002/smll.201102276 pmid: 22351509
82 X Wan, K Chen, D Liu, J Chen, Q Miao, J Xu. High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials, 2012, 24(20): 3906–3915
https://doi.org/10.1021/cm301993z
83 C Backes, A M Abdelkader, C Alonso, A Andrieux-Ledier, R Arenal, J Azpeitia, N Balakrishnan, L Banszerus, J Barjon, R Bartali, S Bellani, C Berger, R Berger, M M Bernal Ortega, C Bernard, P H Beton, A Beyer, A Bianco, P Bøggild, F Bonaccorso, G B Barin, C Botas, R A Bueno, D Carriazo, A Castellanos-Gomez, M Christian, A Ciesielski, T Ciuk, M T Cole, J Coleman, C Coletti, L Crema, H Cun, D Dasler, D D Fazio, N Díez, S Drieschner, G S Duesberg, R Fasel, X Feng, A Fina, S Forti, C Galiotis, G Garberoglio, J M García, J A Garrido, M Gibertini, A Gölzhäuser, J Gómez, T Greber, F Hauke, A Hemmi, I Hernandez-Rodriguez, A Hirsch, S A Hodge, Y Huttel, P U Jepsen, I Jimenez, U Kaiser, T Kaplas, H Kim, A Kis, K Papagelis, K Kostarelos, A Krajewska, K Lee, C Li, H Lipsanen, A Liscio, M R Lohe, A Loiseau, L Lombardi, M F López, O Martin, C Martín, L Martínez, J A Martin-Gago, J I Martínez, N Marzari, A Mayoral, M J Melucci, J Méndez, C Merino, P Merino, A P Meyer, E Miniussi, V Miseikis, N Mishra, V Morandi, C Munuera, R Muñoz, H Nolan, L Ortolani, A K Ott, I Palacio, V Palermo, J Parthenios, I Pasternak, A Patane, M Prato, H Prevost, V Prudkovskiy, N Pugno, T Rojo, A Rossi, P Ruffieux, P Samorì, L Schué, E Setijadi, T Seyller, G Speranza, C Stampfer, I Stenger, W Strupinski, Y Svirko, S Taioli, K B K Teo, M Testi, F Tomarchio, M Tortello, E Treossi, A Turchanin, E Vazquez, E Villaro, P R Whelan, Z Xia, R Yakimova, S Yang, G R Yazdi, C Yim, D Yoon, X Zhang, X Zhuang, L Colombo, A C Ferrari, M Garcia-Hernandez. Production and processing of graphene and related materials. 2D Materials, 2020, 7(2): 022001
https://doi.org/10.1088/2053-1583/ab1e0a
84 M Losurdo, M M Giangregorio, P Capezzuto, G Bruno. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011, 13(46): 20836–20843
https://doi.org/10.1039/c1cp22347j pmid: 22006173
85 G Gajewski, C W Pao. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics, 2011, 135(6): 064707
https://doi.org/10.1063/1.3624524 pmid: 21842949
86 H Kim, C Mattevi, M R Calvo, J C Oberg, L Artiglia, S Agnoli, C F Hirjibehedin, M Chhowalla, E Saiz. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012, 6(4): 3614–3623
https://doi.org/10.1021/nn3008965 pmid: 22443380
87 S Xing, W Wu, Y Wang, J Bao, S S Pei. Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013, 580: 62–66
https://doi.org/10.1016/j.cplett.2013.06.047
88 L Colombo, X Li, B Han, C Magnuson, W Cai, Y Zhu, R S Ruoff. Growth kinetics and defects of CVD graphene on Cu. ECS Transactions, 2010, 28: 109–114
89 Y Hao, M S Bharathi, L Wang, Y Liu, H Chen, S Nie, X Wang, H Chou, C Tan, B Fallahazad, H Ramanarayan, C W Magnuson, E Tutuc, B I Yakobson, K F McCarty, Y W Zhang, P Kim, J Hone, L Colombo, R S Ruoff. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 2013, 342(6159): 720–723
https://doi.org/10.1126/science.1243879 pmid: 24158906
90 H Shu, X Chen, X Tao, F Ding. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano, 2012, 6(4): 3243–3250
https://doi.org/10.1021/nn300726r pmid: 22417179
91 Y Shibuta, R Arifin, K Shimamura, T Oguri, F Shimojo, S Yamaguchi. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chemical Physics Letters, 2014, 610–611: 33–38
https://doi.org/10.1016/j.cplett.2014.06.058
92 M S Liao, C T Au, C F Ng. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chemical Physics Letters, 1997, 272(5–6): 445–452
https://doi.org/10.1016/S0009-2614(97)00555-1
93 C Guéret, M Daroux, F Billaud. Methane pyrolysis: thermodynamics. Chemical Engineering Science, 1997, 52(5): 815–827
https://doi.org/10.1016/S0009-2509(96)00444-7
94 F Viñes, Y Lykhach, T Staudt, M P A Lorenz, C Papp, H P Steinrück, J Libuda, K M Neyman, A Görling. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(22): 6530–6539
https://doi.org/10.1002/chem.201000296 pmid: 20419714
95 E Loginova, N C Bartelt, P J Feibelman, K F McCarty. Evidence for graphene growth by C cluster attachment. New Journal of Physics, 2008, 10(9): 093026
https://doi.org/10.1088/1367-2630/10/9/093026
96 E Loginova, N C Bartelt, P J Feibelman, K F McCarty. Factors influencing graphene growth on metal surfaces. New Journal of Physics, 2009, 11(6): 063046
https://doi.org/10.1088/1367-2630/11/6/063046
97 G A López, E J Mittemeijer. The solubility of C in solid Cu. Scripta Materialia, 2004, 51(1): 1–5
https://doi.org/10.1016/j.scriptamat.2004.03.028
98 K S Kim, Y Zhao, H Jang, S Y Lee, J M Kim, K S Kim, J H Ahn, P Kim, J Y Choi, B H Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
https://doi.org/10.1038/nature07719 pmid: 19145232
99 W Cai, R D Piner, Y Zhu, X Li, Z Tan, H C Floresca, C Yang, L Lu, M J Kim, R S Ruoff. Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2009, 2(11): 851–856
https://doi.org/10.1007/s12274-009-9083-y
100 P Wu, W Zhang, Z Li, J Yang. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small, 2014, 10(11): 2136–2150
https://doi.org/10.1002/smll.201303680 pmid: 24687872
101 L Huang, Q H Chang, G L Guo, Y Liu, Y Q Xie, T Wang, B Ling, H F Yang. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551–556
https://doi.org/10.1016/j.carbon.2011.09.012
102 H B Li, A J Page, Y Wang, S Irle, K Morokuma. Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications (Cambridge), 2012, 48(64): 7937–7939
https://doi.org/10.1039/c2cc32995f pmid: 22763640
103 V P Verma, S Das, I Lahiri, W Choi. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010, 96(20): 203108
https://doi.org/10.1063/1.3431630
104 G Kalita, M Matsushima, H Uchida, K Wakita, M Umeno. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
https://doi.org/10.1039/c0jm01352h
105 Y Nagai, H Sugime, S Noda. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201: 319–324
https://doi.org/10.1016/j.ces.2019.02.038
106 S Bae, H Kim, Y Lee, X Xu, J S Park, Y Zheng, J Balakrishnan, T Lei, H R Kim, Y I Song, Y J Kim, K S Kim, B Ozyilmaz, J H Ahn, B H Hong, S Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132 pmid: 20562870
107 Y Kim, S Kim, W H Lee, H. KimDirect transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27: 1685–1693
https://doi.org/10.1007/s10570-019-02902-2
108 M Kim, A Shah, C Li, P Mustonen, J Susoma, F Manoocheri, J Riikonen, H. Lipsanen Direct transfer of wafer-scale graphene films. 2D Materials, 2017, 4(3): 035004
109 I J Park, T I Kim, T Yoon, S Kang, H Cho, N S Cho, J I Lee, T S Kim, S Y Choi. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Advanced Functional Materials, 2018, 28(10): 1704435
https://doi.org/10.1002/adfm.201704435
110 X Liang, B A Sperling, I Calizo, G Cheng, C A Hacker, Q Zhang, Y Obeng, K Yan, H Peng, Q Li, X Zhu, H Yuan, A R Walker, Z Liu, L M Peng, C A Richter. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144–9153
https://doi.org/10.1021/nn203377t pmid: 21999646
111 X Li, Y Zhu, W Cai, M Borysiak, B Han, D Chen, R D Piner, L Colombo, R S Ruoff. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 2009, 9(12): 4359–4363
https://doi.org/10.1021/nl902623y pmid: 19845330
112 L Gammelgaard, J M Caridad, A Cagliani, D M A Mackenzie, D H Petersen, T J Booth, P. Bøggild Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1(3): 035005
113 J Chan, A Venugopal, A Pirkle, S McDonnell, D Hinojos, C W Magnuson, R S Ruoff, L Colombo, R M Wallace, E M Vogel. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano, 2012, 6(4): 3224–3229
https://doi.org/10.1021/nn300107f pmid: 22390298
114 Y C Lin, C C Lu, C H Yeh, C Jin, K Suenaga, P W Chiu. Graphene annealing: how clean can it be? Nano Letters, 2012, 12(1): 414–419
https://doi.org/10.1021/nl203733r pmid: 22149394
115 Z Zhang, J Du, D Zhang, H Sun, L Yin, L Ma, J Chen, D Ma, H M Cheng, W Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
https://doi.org/10.1038/ncomms14560 pmid: 28233778
116 Y C Lin, C Jin, J C Lee, S F Jen, K Suenaga, P W Chiu. Clean transfer of graphene for isolation and suspension. ACS Nano, 2011, 5(3): 2362–2368
https://doi.org/10.1021/nn200105j pmid: 21351739
117 M H Kang, L O Prieto López, B Chen, K Teo, J A Williams, W I Milne, M T Cole. Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 2016, 8(34): 22506–22515
https://doi.org/10.1021/acsami.6b06557 pmid: 27482734
118 J Song, F Y Kam, R Q Png, W L Seah, J M Zhuo, G K Lim, P K H Ho, L L Chua. A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 2013, 8(5): 356–362
https://doi.org/10.1038/nnano.2013.63 pmid: 23624698
119 J C Yoon, P Thiyagarajan, H J Ahn, J H Jang. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances, 2015, 5(77): 62772–62777
https://doi.org/10.1039/C5RA11100E
120 L Qin, B Kattel, T R Kafle, M Alamri, M Gong, M Panth, Y Hou, J Wu, W Chan. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Advanced Materials Interfaces, 2019, 6(1): 1801419
https://doi.org/10.1002/admi.201801419
121 B N Chandrashekar, B Deng, A S Smitha, Y Chen, C Tan, H Zhang, H Peng, Z Liu. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Advanced Materials, 2015, 27(35): 5210–5216
https://doi.org/10.1002/adma.201502560 pmid: 26256002
122 M Marchena, F Wagner, T Arliguie, B Zhu, B Johnson, M Fernández, T L Chen, T Chang, R Lee, V Pruneri, P Mazumder. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials, 2018, 5(3): 035022
123 A Shivayogimath, P R Whelan, D M A Mackenzie, B Luo, D Huang, D Luo, M Wang, L Gammelgaard, H Shi, R S Ruoff, P Bøggild, T J Booth. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chemistry of Materials, 2019, 31(7): 2328–2336
https://doi.org/10.1021/acs.chemmater.8b04196
124 J Kang, S Hwang, J H Kim, M H Kim, J Ryu, S J Seo, B H Hong, M K Kim, J B Choi. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano, 2012, 6(6): 5360–5365
https://doi.org/10.1021/nn301207d pmid: 22631604
125 G J M Fechine, I Martin-Fernandez, G Yiapanis, R Bentini, E S Kulkarni, R V Bof de Oliveira, X Hu, I Yarovsky, A H Castro Neto, B Özyilmaz. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83: 224–231
https://doi.org/10.1016/j.carbon.2014.11.038
126 C T Cherian, F Giustiniano, I Martin-Fernandez, H Andersen, J Balakrishnan, B Özyilmaz. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small, 2015, 11(2): 189–194
https://doi.org/10.1002/smll.201402024 pmid: 25179223
127 Y Wang, Y Zheng, X Xu, E Dubuisson, Q Bao, J Lu, K P Loh. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano, 2011, 5(12): 9927–9933
https://doi.org/10.1021/nn203700w pmid: 22034835
128 F Pizzocchero, B S Jessen, P R Whelan, N Kostesha, S Lee, J D Buron, I Petrushina, M B Larsen, P Greenwood, W J Cha, K Teo, P U Jepsen, J Hone, P Bøggild, T J Booth. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85: 397–405
https://doi.org/10.1016/j.carbon.2014.12.061
129 Z Zhan, J Sun, L Liu, E Wang, Y Cao, N Lindvall, G Skoblin, A Yurgens. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(33): 8634
https://doi.org/10.1039/C5TC01771H
130 J Sun, Y Chen, X Cai, B Ma, Z Chen, M K Priydarshi, K Chen, T Gao, X Song, Q Ji, X Guo, D Zou, Y Zhang, Z Liu. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8(11): 3496–3504
https://doi.org/10.1007/s12274-015-0849-0
131 D Wei, L Peng, M Li, H Mao, T Niu, C Han, W Chen, A T S Wee. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS Nano, 2015, 9(1): 164–171
https://doi.org/10.1021/nn505214f pmid: 25581685
132 S Zheng, G Zhong, X Wu, L D’Arsiè, J Robertson. Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7: 33185–33193
133 M E Schmidt, C Xu, M Cooke, H Mizuta, H M H Chong. Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline grapheme. Materials Research Express, 2014, 1(2): 025031
https://doi.org/10.1088/2053-1591/1/2/025031
134 N Wei, Q Li, S Cong, H Ci, Y Song, Q Yang, C Lu, C Li, G Zou, J Sun, Y Zhang, Z Liu. Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(9): 4813–4822
https://doi.org/10.1039/C9TA00299E
135 Z Chen, Y Liu, W Zhang, X Guo, L Yin, Y Wang, L Li, Y Zhang, Z Wang, T Zhang. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes. Materials Chemistry and Physics, 2019, 221: 78–88
https://doi.org/10.1016/j.matchemphys.2018.09.039
136 R Vishwakarma, R Zhu, A A Abuelwafa, Y Mabuchi, S Adhikari, S Ichimura, T Soga, M Umeno. Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD. ACS Omega, 2019, 4(6): 11263–11270
https://doi.org/10.1021/acsomega.9b00988 pmid: 31460228
137 B J Park, J S Choi, J H Eom, H Ha, H Y Kim, S Lee, H Shin, S G Yoon. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano, 2018, 12(2): 2008–2016
https://doi.org/10.1021/acsnano.8b00015 pmid: 29390178
138 V D Tran, S V N Pammi, B J Park, Y Han, C Jeon, S G Yoon. Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65: 104018
https://doi.org/10.1016/j.nanoen.2019.104018
139 K C Kwon, B J Kim, J L Lee, S Y Kim. Effect of anions in Au complexes on doping and degradation of graphene. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(13): 2463–2469
https://doi.org/10.1039/c3tc00046j
140 C W Jang, J M Kim, J H Kim, D H Shin, S Kim, S H Choi. Degradation reduction and stability enhancement of p-type graphene by RhCl3 doping. Journal of Alloys and Compounds, 2015, 621: 1–6
https://doi.org/10.1016/j.jallcom.2014.09.182
141 J B Bult, R Crisp, C L Perkins, J L Blackburn. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano, 2013, 7(8): 7251–7261
https://doi.org/10.1021/nn402673z pmid: 23859709
142 H Liu, Y Liu, D Zhu. Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21(10): 3335–3345
https://doi.org/10.1039/C0JM02922J
143 M S Chae, T H Lee, K R Son, Y W Kim, K S Hwang, T G Kim. Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons, 2019, 4(3): 610–618
https://doi.org/10.1039/C8NH00374B
144 X Zhang, A Hsu, H Wang, Y Song, J Kong, M S Dresselhaus, T Palacios. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270
https://doi.org/10.1021/nn4026756 pmid: 23844715
145 L Gomez De Arco, Y Zhang, C W Schlenker, K Ryu, M E Thompson, C Zhou. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
https://doi.org/10.1021/nn901587x pmid: 20394355
146 A Reina, X Jia, J Ho, D Nezich, H Son, V Bulovic, M S Dresselhaus, J Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v pmid: 19046078
147 R Zan, A Altuntepe. Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 2020, 1199: 127026
https://doi.org/10.1016/j.molstruc.2019.127026
148 K K Kim, A Reina, Y Shi, H Park, L J Li, Y H Lee, J Kong. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205
https://doi.org/10.1088/0957-4484/21/28/285205 pmid: 20585167
149 H Bi, F Huang, J Liang, X Xie, M Jiang. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials, 2011, 23(28): 3202–3206
https://doi.org/10.1002/adma.201100645 pmid: 21626576
150 C Guo, X Kong, H Ji. Hot-roll-pressing mediated transfer of chemical vapor deposition graphene for transparent and flexible touch screen with low sheet-resistance. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4337–4342
https://doi.org/10.1166/jnn.2018.15195 pmid: 29442784
151 J H Chang, W H Lin, P C Wang, J I Taur, T A Ku, W T Chen, S J Yan, C I Wu. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5(1): 9693
https://doi.org/10.1038/srep09693 pmid: 25892370
152 S Tongay, K Berke, M Lemaitre, Z Nasrollahi, D B Tanner, A F Hebard, B R Appleton. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology, 2011, 22(42): 425701
https://doi.org/10.1088/0957-4484/22/42/425701 pmid: 21934196
153 S C Xu, B Y Man, S Z Jiang, C S Chen, C Yang, M Liu, X G Gao, Z C Sun, C Zhang. Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 2013, 102(15): 151902
https://doi.org/10.1063/1.4802079
154 H Park, J A Rowehl, K K Kim, V Bulovic, J Kong. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
https://doi.org/10.1088/0957-4484/21/50/505204 pmid: 21098945
155 Y Galagan, A Mescheloff, S C Veenstra, R Andriessen, E A Katz. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 2015, 17(5): 3891–3897
https://doi.org/10.1039/C4CP05571C pmid: 25560492
156 C L Chochos, M Spanos, A Katsouras, E Tatsi, S Drakopoulou, V G Gregoriou, A Avgeropoulos. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91: 51–79
https://doi.org/10.1016/j.progpolymsci.2019.02.002
157 J Zhao, Y Li, G Yang, K Jiang, H Lin, H Ade, W Ma, H Yan. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 15027
https://doi.org/10.1038/nenergy.2015.27
158 W Zhao, S Li, S Zhang, X Liu, J Hou. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials, 2017, 29(2): 1604059
https://doi.org/10.1002/adma.201604059 pmid: 27813280
159 C Sun, F Pan, H Bin, J Zhang, L Xue, B Qiu, Z Wei, Z G Zhang, Y Li. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9(1): 743
https://doi.org/10.1038/s41467-018-03207-x pmid: 29467393
160 G Nogay, F Sahli, J Werner, R Monnard, M Boccard, M Despeisse, F J Haug, Q Jeangros, A Ingenito, C Ballif. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019, 4(4): 844–845
https://doi.org/10.1021/acsenergylett.9b00377
161 L La Notte, G V Bianco, A L Palma, A Di Carlo, G Bruno, A Reale. Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129: 878–883
https://doi.org/10.1016/j.carbon.2017.08.001
162 H Park, S Chang, X Zhou, J Kong, T Palacios, S Gradečak. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 2014, 14(9): 5148–5154
https://doi.org/10.1021/nl501981f pmid: 25141259
163 J Liu, M Durstock, L Dai. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy & Environmental Science, 2014, 7(4): 1297–1306
https://doi.org/10.1039/C3EE42963F
164 A Capasso, L Salamandra, G Faggio, T Dikonimos, F Buonocore, V Morandi, L Ortolani, N Lisi. Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces, 2016, 8(36): 23844–23853
https://doi.org/10.1021/acsami.6b06749 pmid: 27575588
165 D M A Mackenzie, J D Buron, P R Whelan, B S Jessen, A Silajdźić, A Pesquera, A Centeno, A Zurutuza, P Bøggild, D H Petersen. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials, 2015, 2(4): 045003
166 L La Notte, E Villari, A L Palma, A Sacchetti, M Michela Giangregorio, G Bruno, A Di Carlo, G V Bianco, A Reale. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9(1): 62–69
https://doi.org/10.1039/C6NR06156G pmid: 27906382
167 L Gomez De Arco, Y Zhang, C W Schlenker, K Ryu, M E Thompson, C Zhou. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
https://doi.org/10.1021/nn901587x pmid: 20394355
168 H Park, R M Howden, M C Barr, V Bulović, K Gleason, J Kong. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano, 2012, 6(7): 6370–6377
https://doi.org/10.1021/nn301901v pmid: 22724887
169 B H Lee, J H Lee, Y H Kahng, N Kim, Y J Kim, J Lee, T Lee, K Lee. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Advanced Functional Materials, 2014, 24(13): 1847–1856
https://doi.org/10.1002/adfm.201302928
170 L La Notte, P Cataldi, L Ceseracciu, I S Bayer, A Athanassiou, S Marras, E Villari, F Brunetti, A Reale. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7: 105–112
https://doi.org/10.1016/j.mtener.2017.12.010
171 B Rezaei, F Afshar-Taromi, Z Ahmadi, S Amiri Rigi, N Yousefi. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Materials Chemistry and Physics, 2019, 228: 325–335
https://doi.org/10.1016/j.matchemphys.2019.02.084
172 P C Mahakul, K Sa, B Das, B V R S Subramaniam, S Saha, B Moharana, J Raiguru, S Dash, J Mukherjee, P Mahanandia. Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science, 2017, 52(10): 5696–5707
https://doi.org/10.1007/s10853-017-0806-2
173 A G Ricciardulli, S Yang, G J A H Wetzelaer, X Feng, P W M Blom. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Advanced Functional Materials, 2018, 28(14): 1706010
https://doi.org/10.1002/adfm.201706010
174 M Wang, H Yu, X Ma, Y Yao, L Wang, L Liu, K Cao, S Liu, C Dong, B Zhao, C Song, S Chen, W Huang. Copper oxide-modified graphene anode and its application in organic photovoltaic cells. Optics Express, 2018, 26(18): A769–A776
https://doi.org/10.1364/OE.26.00A769 pmid: 30184836
175 H Nan, J Han, Q Luo, X Yin, Y Zhou, Z Yao, X Zhao, X Li, H Lin. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437: 227–232
https://doi.org/10.1016/j.apsusc.2017.12.175
176 R Sankar Ganesh, K Silambarasan, E Durgadevi, M Navaneethan, S Ponnusamy, C Y Kong, C Muthamizhchelvan, Y Shimura, Y Hayakawa. Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells. Applied Surface Science, 2019, 480: 177–185
https://doi.org/10.1016/j.apsusc.2019.02.251
177 K Silambarasan, J Archana, S Athithya, S Harish, R Sankar Ganesh, M Navaneethan, S Ponnusamy, C Muthamizhchelvan, K Hara, Y Hayakawa. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science, 2020, 501: 144010
https://doi.org/10.1016/j.apsusc.2019.144010
178 V Murugadoss, P Panneerselvam, C Yan, Z Guo, S Angaiah. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta, 2019, 312: 157–167
https://doi.org/10.1016/j.electacta.2019.04.142
179 S Rehman, M Noman, A D Khan, A Saboor, M S Ahmad, H U Khan. Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttgart), 2020, 202: 163591
https://doi.org/10.1016/j.ijleo.2019.163591
180 S W Chong, C W Lai, J C Juan, B F Leo. An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy, 2019, 191: 663–671
https://doi.org/10.1016/j.solener.2019.08.065
181 L Wei, P Wang, Y Yang, Z Zhan, Y Dong, W Song, R Fan. Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorganic Chemistry Frontiers, 2018, 5(1): 54–62
https://doi.org/10.1039/C7QI00503B
182 R Sasikumar, T W Chen, S M Chen, S P Rwei, S K Ramaraj. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode. Optical Materials, 2018, 79: 345–352
https://doi.org/10.1016/j.optmat.2018.03.059
183 S N Sadikin, M Y A Rahman, A A Umar, T H T Aziz. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures, 2019, 128: 92–98
https://doi.org/10.1016/j.spmi.2019.01.014
184 NREL. Best research-cell efficiencies (National Renewable Energy Laboratory: Golden, Colorado), 2019
185 M Bag, L A Renna, R Y Adhikari, S Karak, F Liu, P M Lahti, T P Russell, M T Tuominen, D Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. Journal of the American Chemical Society, 2015, 137(40): 13130–13137
https://doi.org/10.1021/jacs.5b08535 pmid: 26414066
186 J P Bastos, U W Paetzold, R Gehlhaar, W Qiu, D Cheyns, S Surana, V Spampinato, T Aernouts, J Poortmans. Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Advanced Energy Materials, 2018, 8(23): 1800554
https://doi.org/10.1002/aenm.201800554
187 S R Raga, M C Jung, M V Lee, M R Leyden, Y Kato, Y Qi. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chemistry of Materials, 2015, 27(5): 1597–1603
https://doi.org/10.1021/cm5041997
188 J A Christians, P A Miranda Herrera, P V Kamat. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 2015, 137(4): 1530–1538
https://doi.org/10.1021/ja511132a pmid: 25590693
189 K Domanski, J P Correa-Baena, N Mine, M K Nazeeruddin, A Abate, M Saliba, W Tress, A Hagfeldt, M Grätzel. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306–6314
https://doi.org/10.1021/acsnano.6b02613 pmid: 27187798
190 A Guerrero, J You, C Aranda, Y S Kang, G Garcia-Belmonte, H Zhou, J Bisquert, Y Yang. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1): 218–224
https://doi.org/10.1021/acsnano.5b03687 pmid: 26679510
191 R Wang, M Mujahid, Y Duan, Z Wang, J Xue, Y Yang. A review of perovskites solar cell stability. Advanced Functional Materials, 2019, 29(47): 1808843
https://doi.org/10.1002/adfm.201808843
192 G Jeong, D Koo, J Seo, S Jung, Y Choi, J Lee, H Park. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Letters, 2020, 20(5): 3718–3727
https://doi.org/acs.nanolett.0c00663
193 M M Tavakoli, R Tavakoli, P Yadav, J Kong. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(2): 679–686
https://doi.org/10.1039/C8TA10857A
194 J M Kim, C W Jang, J H Kim, S Kim, S H Choi. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Applied Surface Science, 2018, 455: 1131–1136
https://doi.org/10.1016/j.apsusc.2018.06.068
195 E Jokar, Z Y Huang, S Narra, C Y Wang, V Kattoor, C C Chung, E W G Diau. Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Advanced Energy Materials, 2018, 8(3): 1701640
https://doi.org/10.1002/aenm.201701640
196 S Cogal, L Calio, G Celik Cogal, M Salado, S Kazim, L Oksuz, S Ahmad, A Uygun Oksuz. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75(10): 4531–4545
https://doi.org/10.1007/s00289-018-2275-4
197 E Nouri, M R Mohammadi, P Lianos. Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126: 208–214
https://doi.org/10.1016/j.carbon.2017.10.015
198 X Zhao, L Tao, H Li, W Huang, P Sun, J Liu, S Liu, Q Sun, Z Cui, L Sun, Y Shen, Y Yang, M Wang. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Letters, 2018, 18(4): 2442–2449
https://doi.org/10.1021/acs.nanolett.8b00025 pmid: 29539264
199 P O’Keeffe, D Catone, A Paladini, F Toschi, S Turchini, L Avaldi, F Martelli, A Agresti, S Pescetelli, A E Del Rio Castillo, F Bonaccorso, A Di Carlo. Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers. Nano Letters, 2019, 19(2): 684–691
https://doi.org/10.1021/acs.nanolett.8b03685 pmid: 30669832
200 J Yoon, H Sung, G Lee, W Cho, N Ahn, H S Jung, M Choi. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science, 2017, 10(1): 337–345
https://doi.org/10.1039/C6EE02650H
201 J H Heo, D H Shin, D H Song, D H Kim, S J Lee, S H Im. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(18): 8251–8258
https://doi.org/10.1039/C8TA02672F
202 C Zhang, S Wang, H Zhang, Y Feng, W Tian, Y Yan, J Bian, Y Wang, S Jin, S M Zakeeruddin, M Grätzel, Y Shi. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 2019, 12(12): 3585–3594
https://doi.org/10.1039/C9EE02391G
203 H Sung, N Ahn, M S Jang, J K Lee, H Yoon, N G Park, M Choi. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials, 2016, 6(3): 1501873
https://doi.org/10.1002/aenm.201501873
204 W Fu, L Jiang, E P van Geest, L M C Lima, G F Schneider. Sensing at the surface of graphene field-effect transistors. Advanced Materials, 2017, 29(6): 1603610
https://doi.org/10.1002/adma.201603610 pmid: 27896865
205 S Afsahi, M B Lerner, J M Goldstein, J Lee, X Tang, D A Bagarozzi Jr, D Pan, L Locascio, A Walker, F Barron, B R Goldsmith. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100: 85–88
https://doi.org/10.1016/j.bios.2017.08.051 pmid: 28865242
206 S Chen, Y Sun, Y Xia, K Lv, B Man, C Yang. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors & Bioelectronics, 2020, 156: 112128
https://doi.org/10.1016/j.bios.2020.112128 pmid: 32174556
207 M T Hwang, M Heiranian, Y Kim, S You, J Leem, A Taqieddin, V Faramarzi, Y Jing, I Park, A M van der Zande, S Nam, N R Aluru, R Bashir. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11(1): 1543
https://doi.org/10.1038/s41467-020-15330-9 pmid: 32210235
208 S Kim, L Xing, A E Islam, M S Hsiao, Y Ngo, O M Pavlyuk, R L Martineau, C M Hampton, C Crasto, J Slocik, M P Kadakia, J A Hagen, N Kelley-Loughnane, R R Naik, L F Drummy. In operando observation of neuropeptide capture and release on graphene field-effect transistor biosensors with picomolar sensitivity. ACS Applied Materials & Interfaces, 2019, 11(15): 13927–13934
https://doi.org/10.1021/acsami.8b20498 pmid: 30884221
209 G Seo, G Lee, M J Kim, S H Baek, M Choi, K B Ku, C S Lee, S Jun, D Park, H G Kim, S J Kim, J O Lee, B T Kim, E C Park, S I Kim. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4): 5135–5142
https://doi.org/10.1021/acsnano.0c02823 pmid: 32293168
210 P T K Loan, D Wu, C Ye, X Li, V T Tra, Q Wei, L Fu, A Yu, L J Li, C T Lin. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors & Bioelectronics, 2018, 99: 85–91
https://doi.org/10.1016/j.bios.2017.07.045 pmid: 28743083
211 H Zhan, J Cervenka, S Prawer, D J Garrett. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale, 2018, 10(3): 930–935
https://doi.org/10.1039/C7NR06330J pmid: 29265123
212 N Li, T Tang, J Li, L Luo, C Li, J Shen, J Yao. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. Journal of Magnetism and Magnetic Materials, 2019, 484: 445–450
https://doi.org/10.1016/j.jmmm.2019.04.003
213 X Zhou, L Sheng, X Ling. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Scientific Reports, 2018, 8(1): 1221
https://doi.org/10.1038/s41598-018-19713-3 pmid: 29352177
214 Z Zhao, H Yang, W Zhao, S Deng, K Zhang, R Deng, Q He, H Gao, J Li. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2020, 8(16): 3623–3630
https://doi.org/10.1039/C9TB02388G pmid: 31934712
215 K X Xie, S H Cao, Z C Wang, Y H Weng, S X Huo, Y Y Zhai, M Chen, X H Pan, Y Q Li. Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B, Chemical, 2017, 253: 804–808
https://doi.org/10.1016/j.snb.2017.06.099
216 L Sun, Y Zhang, Y Wang, Y Yang, C Zhang, X Weng, S Zhu, X Yuan. Real-time subcellular imaging based on graphene biosensors. Nanoscale, 2018, 10(4): 1759–1765
https://doi.org/10.1039/C7NR07479D pmid: 29308810
217 Y Xu, R Zhuang, Z Zhang, R Yi, X Guo, Z Qi. Single-layer graphene-based surface plasmon resonance biosensors for immunization study. In: Proceedings of the 8th Applied Optics and Photonics China (AOPC 2019), Optical Spectroscopy Imaging, 2019, 11337
218 M S Rahman, M S Anower, M R Hasan, M B Hossain, M I Haque. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396: 36–43
https://doi.org/10.1016/j.optcom.2017.03.035
219 K K Gopalan, B Paulillo, D M A Mackenzie, D Rodrigo, N Bareza, P R Whelan, A Shivayogimath, V Pruneri. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918
https://doi.org/10.1021/acs.nanolett.8b02613 pmid: 30114919
220 P H Siegel. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438–2447
https://doi.org/10.1109/TMTT.2004.835916
221 P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
222 K Sengupta. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In: Proceedings of IEEE International Conference on Communications, Workshop ICC Workshop, 2019
223 K Ajito, Y Ueno. THz chemical imaging for biological applications. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 293–300
https://doi.org/10.1109/TTHZ.2011.2159562
224 G Auton, D B But, J Zhang, E Hill, D Coquillat, C Consejo, P Nouvel, W Knap, L Varani, F Teppe, J Torres, A Song. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters, 2017, 17(11): 7015–7020
https://doi.org/10.1021/acs.nanolett.7b03625 pmid: 29016145
225 X Yang, A Vorobiev, A Generalov, M A Andersson, J Stake. A flexible graphene terahertz detector. Applied Physics Letters, 2017, 111(2): 021102
https://doi.org/10.1063/1.4993434
226 X X Yang, J D Sun, H Qin, L Lv, L N Su, B Yan, X X Li, Z P Zhang, J Y Fang. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 2015, 24(4): 047206
https://doi.org/10.1088/1674-1056/24/4/047206
227 F Valmorra, G Scalari, C Maissen, W Fu, C Schönenberger, J W Choi, H G Park, M Beck, J Faist. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Letters, 2013, 13(7): 3193–3198
https://doi.org/10.1021/nl4012547 pmid: 23802181
228 A A Generalov, M A Andersson, X Yang, A Vorobiev, J A Stake. 400-GHz graphene FET detector. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 614–616
https://doi.org/10.1109/TTHZ.2017.2722360
229 N Kakenov, M S Ergoktas, O Balci, C Kocabas. Graphene based terahertz phase modulators. 2D Materials, 2018, 5(3): 035018
230 J W Shin, H Cho, J Lee, J Moon, J H Han, K Kim, S Cho, J I Lee, B H Kwon, D H Cho, K M Lee, M Suemitsu, N S Cho. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes. Optics Express, 2018, 26(2): 617–626
https://doi.org/10.1364/OE.26.000617 pmid: 29401944
231 J W Shin, J H Han, H Cho, J Moon, B H Kwon, S Cho, T Yoon, T S Kim, M Suemitsu, J I Lee, N Cho S. Display process compatible accurate graphene patterning for OLED applications. 2D Materials, 2017, 5(1): 014003
232 J Lee, T H Han, M H Park, D Y Jung, J Seo, H K Seo, H Cho, E Kim, J Chung, S Y Choi, T S Kim, T W Lee, S Yoo. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7(1): 11791
https://doi.org/10.1038/ncomms11791 pmid: 27250743
233 O E Kwon, J W Shin, H Oh, C Kang, H Cho, B H Kwon, C W Byun, J H Yang, K M Lee, J H Han, N Sung Cho, J Hyuk Yoon, S Jin Chae, J Sung Park, H Lee, C S Hwang, J Moon, J I Lee. A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display, 2020, 21(1): 49–56
https://doi.org/10.1080/15980316.2019.1680452
234 Z Zhang, J Du, D Zhang, H Sun, L Yin, L Ma, J Chen, D Ma, H M Cheng, W Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
https://doi.org/10.1038/ncomms14560 pmid: 28233778
235 E Torres Alonso, G Karkera, G F Jones, M F Craciun, S Russo. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Applied Materials & Interfaces, 2016, 8(26): 16541–16545
https://doi.org/10.1021/acsami.6b04042 pmid: 27299371
236 Z G Wang, Y F Chen, P J Li, X Hao, J B Liu, R Huang, Y R Li. Flexible graphene-based electroluminescent devices. ACS Nano, 2011, 5(9): 7149–7154
https://doi.org/10.1021/nn2018649 pmid: 21842851
237 H Shin, B K Sharma, S W Lee, J B Lee, M Choi, L Hu, C Park, J H Choi, T W Kim, J H Ahn. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Applied Materials & Interfaces, 2019, 11(15): 14222–14228
https://doi.org/10.1021/acsami.8b22135 pmid: 30912424
238 A Chandran, T Joshi, I Sharma, K M Subhedar, D S Mehta, A M Biradar. Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. Journal of Molecular Liquids, 2019, 279: 294–298
https://doi.org/10.1016/j.molliq.2019.01.140
239 T Hu, H Wang, Y Shao, X Zhang, G Liu, M Li, H Chen, Y Lee. 66-3: a high reliability PEDOT:PSS/graphene transparent electrode for liquid crystal displays. SID Symposium Digest of Technical Papers, 2017, 48(1): 972–975
240 S Petrov, V Marinova, S H Lin, C M Chang, Y H Lin, K Y Hsu. Large scale liquid crystal device with graphene-based electrodes. Optical Data Processing and Storage, 2017, 3(1): 114–118
https://doi.org/10.1515/odps-2017-0015
241 N Mustapha, Z Fekkai, K H Ibnaouf. Improved performance of organic light-emitting diodes based on oligomer thin films with graphene. Journal of Electronic Materials, 2020, 49(3): 2203–2210
https://doi.org/10.1007/s11664-019-07903-2
242 Y Fu, J Sun, Z Du, W Guo, C Yan, F Xiong, L Wang, Y Dong, C Xu, J Deng, T Guo, Q F Yan. Monolithic integrated device of GaN micro-LED with graphene transparent electrode and graphene active-matrix driving transistor. Materials (Basel), 2019, 12(3): 428
https://doi.org/10.3390/ma12030428 pmid: 30704131
[1] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[2] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[3] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[4] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[5] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[6] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[7] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[8] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[9] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed