|
|
|
Review of fabrication methods of large-area transparent graphene electrodes for industry |
Petri MUSTONEN( ), David M. A. MACKENZIE, Harri LIPSANEN |
| Department of Electronics and Nanoengineering, Aalto University, Aalto FI-00076, Finland |
|
|
|
|
Abstract Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of , slightly over the minimum required for industry of , while CVD reaches as high as .
|
| Keywords
transparent electrodes
graphene
liquid exfoliation
chemical vapor deposition (CVD)
|
|
Corresponding Author(s):
Petri MUSTONEN
|
|
Online First Date: 13 July 2020
Issue Date: 21 July 2020
|
|
| 1 |
K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
| 2 |
R Peierls. Quelques propriétés typiques des corps solides. Annales de l'Institut Henri Poincaré, 1935, 5(3): 177–222
|
| 3 |
L D Landau. On the theory of phase transitions. Ukrainian Journal of Physical, 1937, 11: 19–32
|
| 4 |
N D Mermin. Crystalline order in two dimensions. Physical Review, 1968, 176(1): 250–254
https://doi.org/10.1103/PhysRev.176.250
|
| 5 |
D R Nelson, L Peliti. Fluctuations in membranes with crystalline and hexatic order. Journal de Physique (Paris), 1988, 49(1): 139
https://doi.org/10.1051/jphys:01988004901013900
|
| 6 |
L Banszerus, M Schmitz, S Engels, M Goldsche, K Watanabe, T Taniguchi, B Beschoten, C Stampfer. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters, 2016, 16(2): 1387–1391
https://doi.org/10.1021/acs.nanolett.5b04840
pmid: 26761190
|
| 7 |
A S Mayorov, R V Gorbachev, S V Morozov, L Britnell, R Jalil, L A Ponomarenko, P Blake, K S Novoselov, K Watanabe, T Taniguchi, A K Geim. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 2011, 11(6): 2396–2399
https://doi.org/10.1021/nl200758b
pmid: 21574627
|
| 8 |
L Wang, I Meric, P Y Huang, Q Gao, Y Gao, H Tran, T Taniguchi, K Watanabe, L M Campos, D A Muller, J Guo, P Kim, J Hone, K L Shepard, C R Dean. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614–617
https://doi.org/10.1126/science.1244358
pmid: 24179223
|
| 9 |
E H Hwang, S Adam, S D Sarma. Carrier transport in two-dimensional graphene layers. Physical Review Letters, 2007, 98(18): 186806
https://doi.org/10.1103/PhysRevLett.98.186806
pmid: 17501596
|
| 10 |
G H Lee, R C Cooper, S J An, S Lee, A van der Zande, N Petrone, A G Hammerberg, C Lee, B Crawford, W Oliver, J W Kysar, J Hone. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 2013, 340(6136): 1073–1076
https://doi.org/10.1126/science.1235126
pmid: 23723231
|
| 11 |
J Xu, G Yuan, Q Zhu, J Wang, S Tang, L Gao. Enhancing the strength of graphene by a denser grain boundary. ACS Nano, 2018, 12(5): 4529–4535
https://doi.org/10.1021/acsnano.8b00869
pmid: 29659251
|
| 12 |
C Lee, X Wei, J W Kysar, J Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996
pmid: 18635798
|
| 13 |
R R Nair, P Blake, A N Grigorenko, K S Novoselov, T J Booth, T Stauber, N M R Peres, A K Geim. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
| 14 |
A A Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064
pmid: 21778997
|
| 15 |
Q Zheng, W H Ip, X Lin, N Yousefi, K K Yeung, Z Li, J K Kim. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 2011, 5(7): 6039–6051
https://doi.org/10.1021/nn2018683
pmid: 21692470
|
| 16 |
V P Pham, A Mishra, G Young Yeom. The enhancement of Hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing. RSC Advances, 2017, 7(26): 16104–16108
https://doi.org/10.1039/C7RA01330B
|
| 17 |
S Suzuki, M Yoshimura. Chemical stability of graphene coated silver substrates for surface-enhanced raman scattering. Scientific Reports, 2017, 7(1): 14851
https://doi.org/10.1038/s41598-017-14782-2
pmid: 29093553
|
| 18 |
S Pisana, M Lazzeri, C Casiraghi, K S Novoselov, A K Geim, A C Ferrari, F Mauri. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials, 2007, 6(3): 198–201
https://doi.org/10.1038/nmat1846
pmid: 17293849
|
| 19 |
K S Novoselov, Z Jiang, Y Zhang, S V Morozov, H L Stormer, U Zeitler, J C Maan, G S Boebinger, P Kim, A K Geim. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201
pmid: 17303717
|
| 20 |
Y Zhang, Y W Tan, H L Stormer, P Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204
https://doi.org/10.1038/nature04235
pmid: 16281031
|
| 21 |
K I Bolotin, F Ghahari, M D Shulman, H L Stormer, P Kim. Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462(7270): 196–199
https://doi.org/10.1038/nature08582
pmid: 19881489
|
| 22 |
Z Qiao, S A Yang, W Feng, W K Tse, J Ding, Y Yao, J Wang, Q Niu. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(16): 161414
https://doi.org/10.1103/PhysRevB.82.161414
|
| 23 |
D Levy, E Castellón. Transparent Conductive Materials: Materials, Synthesis, Characterization, Applications. New York: John Wiley & Sons, 2018
|
| 24 |
Y Hu, X Diao, C Wang, W Hao, T Wang. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004, 75(2): 183–188
https://doi.org/10.1016/j.vacuum.2004.01.081
|
| 25 |
K Alzoubi, M M Hamasha, S Lu, B Sammakia. Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 2011, 7(11): 593–600
https://doi.org/10.1109/JDT.2011.2151830
|
| 26 |
H G Im, S Jeong, J Jin, J Lee, D Y Youn, W T Koo, S B Kang, H J Kim, J Jang, D Lee, H K Kim, I D Kim, J Y Lee, B S Bae. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8(6): e282
https://doi.org/10.1038/am.2016.85
|
| 27 |
S H Park, S J Lee, J H Lee, J Kal, J Hahn, H K Kim. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics, 2016, 30: 112–121
https://doi.org/10.1016/j.orgel.2015.12.009
|
| 28 |
K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
| 29 |
K S Suslick. Sonochemistry. Science, 1990, 247(4949): 1439–1445
https://doi.org/10.1126/science.247.4949.1439
pmid: 17791211
|
| 30 |
M Yi, Z Shen. A review on mechanical exfoliation for the scalable production of grapheme. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
https://doi.org/10.1039/C5TA00252D
|
| 31 |
X Chen, J F Dobson, C L Raston. Vortex fluidic exfoliation of graphite and boron nitride. Chemical Communications (Cambridge), 2012, 48(31): 3703–3705
https://doi.org/10.1039/c2cc17611d
pmid: 22314550
|
| 32 |
K R Paton, E Varrla, C Backes, R J Smith, U Khan, A O’Neill, C Boland, M Lotya, O M Istrate, P King, T Higgins, S Barwich, P May, P Puczkarski, I Ahmed, M Moebius, H Pettersson, E Long, J Coelho, S E O’Brien, E K McGuire, B M Sanchez, G S Duesberg, N McEvoy, T J Pennycook, C Downing, A Crossley, V Nicolosi, J N Coleman. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13(6): 624–630
https://doi.org/10.1038/nmat3944
pmid: 24747780
|
| 33 |
Z Lin, P S Karthik, M Hada, T Nishikawa, Y Hayashi. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel, Switzerland), 2017, 7(6): 125
https://doi.org/10.3390/nano7060125
pmid: 28555015
|
| 34 |
P Blake, P D Brimicombe, R R Nair, T J Booth, D Jiang, F Schedin, L A Ponomarenko, S V Morozov, H F Gleeson, E W Hill, A K Geim, K S Novoselov. Graphene-based liquid crystal device. Nano Letters, 2008, 8(6): 1704–1708
https://doi.org/10.1021/nl080649i
pmid: 18444691
|
| 35 |
Y Hernandez, V Nicolosi, M Lotya, F M Blighe, Z Sun, S De, I T McGovern, B Holland, M Byrne, Y K Gun’Ko, J J Boland, P Niraj, G Duesberg, S Krishnamurthy, R Goodhue, J Hutchison, V Scardaci, A C Ferrari, J N Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
https://doi.org/10.1038/nnano.2008.215
pmid: 18772919
|
| 36 |
J S Bunch, Y Yaish, M Brink, K Bolotin, P L McEuen. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Letters, 2005, 5(2): 287–290
https://doi.org/10.1021/nl048111+
pmid: 15794612
|
| 37 |
Y Hernandez, M Lotya, D Rickard, S D Bergin, J N Coleman. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26(5): 3208–3213
https://doi.org/10.1021/la903188a
pmid: 19883090
|
| 38 |
S D Bergin, V Nicolosi, P V Streich, S Giordani, Z Sun, A H Windle, P Ryan, N P P Niraj, Z T T Wang, L Carpenter, W J Blau, J J Boland, J P Hamilton, J N Coleman. Towards solutions of single-walled carbon nanotubes in common solvents. Advanced Materials, 2008, 20(10): 1876–1881
https://doi.org/10.1002/adma.200702451
|
| 39 |
J N Coleman. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 2009, 19(23): 3680–3695
https://doi.org/10.1002/adfm.200901640
|
| 40 |
Y T Liang, M C Hersam. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. Journal of the American Chemical Society, 2010, 132(50): 17661–17663
https://doi.org/10.1021/ja107661g
pmid: 21114312
|
| 41 |
K H Park, B H Kim, S H Song, J Kwon, B S Kong, K Kang, S Jeon. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Letters, 2012, 12(6): 2871–2876
https://doi.org/10.1021/nl3004732
pmid: 22616737
|
| 42 |
T Tomašević-Ilić, J Pešić, I Milošević, J Vujin, A Matković, M Spasenović, R Gajić. Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48(6): 319
https://doi.org/10.1007/s11082-016-0591-1
|
| 43 |
S Majee, M Song, S L Zhang, Z B Zhang. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
https://doi.org/10.1016/j.carbon.2016.02.013
|
| 44 |
R Narayan, S O Kim. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2(1): 20
https://doi.org/10.1186/s40580-015-0050-x
pmid: 28191406
|
| 45 |
N Liu, F Luo, H Wu, Y Liu, C Zhang, J Chen. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 2008, 18(10): 1518–1525
https://doi.org/10.1002/adfm.200700797
|
| 46 |
U Khan, A O’Neill, M Lotya, S De, J N Coleman. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871
https://doi.org/10.1002/smll.200902066
pmid: 20209652
|
| 47 |
J Li, H Yan, D Dang, W Wei, L Meng. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535: 92–99
https://doi.org/10.1016/j.jcis.2018.09.094
pmid: 30286311
|
| 48 |
M Zhang, R R Parajuli, D Mastrogiovanni, B Dai, P Lo, W Cheung, R Brukh, P L Chiu, T Zhou, Z Liu, E Garfunkel, H He. Production of graphene sheets by direct dispersion with aromatic healing agents. Small, 2010, 6(10): 1100–1107
https://doi.org/10.1002/smll.200901978
pmid: 20449847
|
| 49 |
L Liu, K T Rim, D Eom, T F Heinz, G W Flynn. Direct observation of atomic scale graphitic layer growth. Nano Letters, 2008, 8(7): 1872–1878
https://doi.org/10.1021/nl0804046
pmid: 18563944
|
| 50 |
T T Tung, J Yoo, F K Alotaibi, M J Nine, R Karunagaran, M Krebsz, G T Nguyen, D N H Tran, J F Feller, D Losic. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Applied Materials & Interfaces, 2016, 8(25): 16521–16532
https://doi.org/10.1021/acsami.6b04872
pmid: 27268515
|
| 51 |
S Majee, M Song, S L Zhang, Z B Zhang. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
https://doi.org/10.1016/j.carbon.2016.02.013
|
| 52 |
D W Shin, M D Barnes, K Walsh, D Dimov, P Tian, A I S Neves, C D Wright, S M Yu, J B Yoo, S Russo, M F Craciun. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Advanced Materials, 2018, 30(39): 1802953
https://doi.org/10.1002/adma.201802953
pmid: 30141202
|
| 53 |
T Fukushima, T Aida. Ionic liquids for soft functional materials with carbon nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13(18): 5048–5058
https://doi.org/10.1002/chem.200700554
pmid: 17516613
|
| 54 |
C Y Su, A Y Lu, Y Xu, F R Chen, A N Khlobystov, L J Li. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011, 5(3): 2332–2339
https://doi.org/10.1021/nn200025p
pmid: 21309565
|
| 55 |
J Liu, M Notarianni, G Will, V T Tiong, H Wang, N Motta. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 2013, 29(43): 13307–13314
https://doi.org/10.1021/la403159n
pmid: 24089707
|
| 56 |
K Parvez, Z S Wu, R Li, X Liu, R Graf, X Feng, K Müllen. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 2014, 136(16): 6083–6091
https://doi.org/10.1021/ja5017156
pmid: 24684678
|
| 57 |
Y Zhang, Y Xu. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials, 2019, 29(37): 1902171
https://doi.org/10.1002/adfm.201902171
|
| 58 |
S Roscher, R Hoffmann, M Prescher, P Knittel, O Ambacher. High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Advances, 2019, 9: 29305–29311
|
| 59 |
W S Jr Hummers, R E Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
|
| 60 |
M Hirata, T Gotou, S Horiuchi, M Fujiwara, M Ohba. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937
https://doi.org/10.1016/S0008-6223(04)00444-0
|
| 61 |
L Shahriary, A A Athawale. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2014, 2(1): 58–63
|
| 62 |
D R Dreyer, A D Todd, C W Bielawski. Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 2014, 43(15): 5288–5301
https://doi.org/10.1039/C4CS00060A
pmid: 24789533
|
| 63 |
C Mattevi, G Eda, S Agnoli, S Miller, K A Mkhoyan, O Celik, D Mastrogiovanni, G Granozzi, E Garfunkel, M Chhowalla. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 2009, 19(16): 2577–2583
https://doi.org/10.1002/adfm.200900166
|
| 64 |
S J Wang, Y Geng, Q Zheng, J K Kim. Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48(6): 1815–1823
https://doi.org/10.1016/j.carbon.2010.01.027
|
| 65 |
J Geng, H T Jung. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. Journal of Physical Chemistry C, 2010, 114(18): 8227–8234
https://doi.org/10.1021/jp1008779
|
| 66 |
V H Pham, T V Cuong, S H Hur, E W Shin, J S Kim, J S Chung, E J Kim. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48(7): 1945–1951
https://doi.org/10.1016/j.carbon.2010.01.062
|
| 67 |
M Alahbakhshi, A Fallahi, E Mohajerani, M R Fathollahi, F A Taromi, M Shahinpoor. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials, 2017, 64: 366–375
https://doi.org/10.1016/j.optmat.2017.01.008
|
| 68 |
H A Becerril, J Mao, Z Liu, R M Stoltenberg, Z Bao, Y Chen. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470
https://doi.org/10.1021/nn700375n
pmid: 19206571
|
| 69 |
J Wang, M Liang, Y Fang, T Qiu, J Zhang, L Zhi. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 2012, 24(21): 2874–2878
https://doi.org/10.1002/adma.201200055
pmid: 22539114
|
| 70 |
S De, J N Coleman. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
https://doi.org/10.1021/nn100343f
pmid: 20384321
|
| 71 |
M Lotya, Y Hernandez, P J King, R J Smith, V Nicolosi, L S Karlsson, F M Blighe, S De, Z Wang, I T McGovern, G S Duesberg, J N Coleman. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131(10): 3611–3620
https://doi.org/10.1021/ja807449u
pmid: 19227978
|
| 72 |
S De, P J King, M Lotya, A O’Neill, E M Doherty, Y Hernandez, G S Duesberg, J N Coleman. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458–464
https://doi.org/10.1002/smll.200901162
pmid: 19859943
|
| 73 |
C T Au, C F Ng, M S Liao. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. Journal of Catalysis, 1999, 185(1): 12–22
https://doi.org/10.1006/jcat.1999.2498
|
| 74 |
G Nandamuri, S Roumimov, R Solanki. Chemical vapor deposition of graphene films. Nanotechnology, 2010, 21(14): 145604
https://doi.org/10.1088/0957-4484/21/14/145604
pmid: 20215663
|
| 75 |
H An, W J Lee, J Jung. Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011, 11(4): S81–S85
https://doi.org/10.1016/j.cap.2011.03.077
|
| 76 |
G W Cushing, V Johánek, J K Navin, I Harrison. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. Journal of Physical Chemistry C, 2015, 119(9): 4759–4768
https://doi.org/10.1021/jp508177k
|
| 77 |
G Imamura, K Saiki. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. Journal of Physical Chemistry C, 2011, 115(20): 10000–10005
https://doi.org/10.1021/jp202128f
|
| 78 |
L Zhao, K T Rim, H Zhou, R He, T F Heinz, A Pinczuk, G W Flynn, A N Pasupathy. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications, 2011, 151(7): 509–513
https://doi.org/10.1016/j.ssc.2011.01.014
|
| 79 |
Z Sun, Z Yan, J Yao, E Beitler, Y Zhu, J M Tour. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552
https://doi.org/10.1038/nature09579
pmid: 21068724
|
| 80 |
C Virojanadara, M Syväjarvi, R Yakimova, L I Johansson, A A Zakharov, T Balasubramanian. Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B: Condensed Matter and Materials Physics, 2008, 78(24): 245403
https://doi.org/10.1103/PhysRevB.78.245403
|
| 81 |
J K Wassei, M Mecklenburg, J A Torres, J D Fowler, B C Regan, R B Kaner, B H Weiller. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small, 2012, 8(9): 1415–1422
https://doi.org/10.1002/smll.201102276
pmid: 22351509
|
| 82 |
X Wan, K Chen, D Liu, J Chen, Q Miao, J Xu. High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials, 2012, 24(20): 3906–3915
https://doi.org/10.1021/cm301993z
|
| 83 |
C Backes, A M Abdelkader, C Alonso, A Andrieux-Ledier, R Arenal, J Azpeitia, N Balakrishnan, L Banszerus, J Barjon, R Bartali, S Bellani, C Berger, R Berger, M M Bernal Ortega, C Bernard, P H Beton, A Beyer, A Bianco, P Bøggild, F Bonaccorso, G B Barin, C Botas, R A Bueno, D Carriazo, A Castellanos-Gomez, M Christian, A Ciesielski, T Ciuk, M T Cole, J Coleman, C Coletti, L Crema, H Cun, D Dasler, D D Fazio, N Díez, S Drieschner, G S Duesberg, R Fasel, X Feng, A Fina, S Forti, C Galiotis, G Garberoglio, J M García, J A Garrido, M Gibertini, A Gölzhäuser, J Gómez, T Greber, F Hauke, A Hemmi, I Hernandez-Rodriguez, A Hirsch, S A Hodge, Y Huttel, P U Jepsen, I Jimenez, U Kaiser, T Kaplas, H Kim, A Kis, K Papagelis, K Kostarelos, A Krajewska, K Lee, C Li, H Lipsanen, A Liscio, M R Lohe, A Loiseau, L Lombardi, M F López, O Martin, C Martín, L Martínez, J A Martin-Gago, J I Martínez, N Marzari, A Mayoral, M J Melucci, J Méndez, C Merino, P Merino, A P Meyer, E Miniussi, V Miseikis, N Mishra, V Morandi, C Munuera, R Muñoz, H Nolan, L Ortolani, A K Ott, I Palacio, V Palermo, J Parthenios, I Pasternak, A Patane, M Prato, H Prevost, V Prudkovskiy, N Pugno, T Rojo, A Rossi, P Ruffieux, P Samorì, L Schué, E Setijadi, T Seyller, G Speranza, C Stampfer, I Stenger, W Strupinski, Y Svirko, S Taioli, K B K Teo, M Testi, F Tomarchio, M Tortello, E Treossi, A Turchanin, E Vazquez, E Villaro, P R Whelan, Z Xia, R Yakimova, S Yang, G R Yazdi, C Yim, D Yoon, X Zhang, X Zhuang, L Colombo, A C Ferrari, M Garcia-Hernandez. Production and processing of graphene and related materials. 2D Materials, 2020, 7(2): 022001
https://doi.org/10.1088/2053-1583/ab1e0a
|
| 84 |
M Losurdo, M M Giangregorio, P Capezzuto, G Bruno. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011, 13(46): 20836–20843
https://doi.org/10.1039/c1cp22347j
pmid: 22006173
|
| 85 |
G Gajewski, C W Pao. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics, 2011, 135(6): 064707
https://doi.org/10.1063/1.3624524
pmid: 21842949
|
| 86 |
H Kim, C Mattevi, M R Calvo, J C Oberg, L Artiglia, S Agnoli, C F Hirjibehedin, M Chhowalla, E Saiz. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012, 6(4): 3614–3623
https://doi.org/10.1021/nn3008965
pmid: 22443380
|
| 87 |
S Xing, W Wu, Y Wang, J Bao, S S Pei. Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013, 580: 62–66
https://doi.org/10.1016/j.cplett.2013.06.047
|
| 88 |
L Colombo, X Li, B Han, C Magnuson, W Cai, Y Zhu, R S Ruoff. Growth kinetics and defects of CVD graphene on Cu. ECS Transactions, 2010, 28: 109–114
|
| 89 |
Y Hao, M S Bharathi, L Wang, Y Liu, H Chen, S Nie, X Wang, H Chou, C Tan, B Fallahazad, H Ramanarayan, C W Magnuson, E Tutuc, B I Yakobson, K F McCarty, Y W Zhang, P Kim, J Hone, L Colombo, R S Ruoff. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 2013, 342(6159): 720–723
https://doi.org/10.1126/science.1243879
pmid: 24158906
|
| 90 |
H Shu, X Chen, X Tao, F Ding. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano, 2012, 6(4): 3243–3250
https://doi.org/10.1021/nn300726r
pmid: 22417179
|
| 91 |
Y Shibuta, R Arifin, K Shimamura, T Oguri, F Shimojo, S Yamaguchi. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chemical Physics Letters, 2014, 610–611: 33–38
https://doi.org/10.1016/j.cplett.2014.06.058
|
| 92 |
M S Liao, C T Au, C F Ng. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chemical Physics Letters, 1997, 272(5–6): 445–452
https://doi.org/10.1016/S0009-2614(97)00555-1
|
| 93 |
C Guéret, M Daroux, F Billaud. Methane pyrolysis: thermodynamics. Chemical Engineering Science, 1997, 52(5): 815–827
https://doi.org/10.1016/S0009-2509(96)00444-7
|
| 94 |
F Viñes, Y Lykhach, T Staudt, M P A Lorenz, C Papp, H P Steinrück, J Libuda, K M Neyman, A Görling. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(22): 6530–6539
https://doi.org/10.1002/chem.201000296
pmid: 20419714
|
| 95 |
E Loginova, N C Bartelt, P J Feibelman, K F McCarty. Evidence for graphene growth by C cluster attachment. New Journal of Physics, 2008, 10(9): 093026
https://doi.org/10.1088/1367-2630/10/9/093026
|
| 96 |
E Loginova, N C Bartelt, P J Feibelman, K F McCarty. Factors influencing graphene growth on metal surfaces. New Journal of Physics, 2009, 11(6): 063046
https://doi.org/10.1088/1367-2630/11/6/063046
|
| 97 |
G A López, E J Mittemeijer. The solubility of C in solid Cu. Scripta Materialia, 2004, 51(1): 1–5
https://doi.org/10.1016/j.scriptamat.2004.03.028
|
| 98 |
K S Kim, Y Zhao, H Jang, S Y Lee, J M Kim, K S Kim, J H Ahn, P Kim, J Y Choi, B H Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
https://doi.org/10.1038/nature07719
pmid: 19145232
|
| 99 |
W Cai, R D Piner, Y Zhu, X Li, Z Tan, H C Floresca, C Yang, L Lu, M J Kim, R S Ruoff. Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2009, 2(11): 851–856
https://doi.org/10.1007/s12274-009-9083-y
|
| 100 |
P Wu, W Zhang, Z Li, J Yang. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small, 2014, 10(11): 2136–2150
https://doi.org/10.1002/smll.201303680
pmid: 24687872
|
| 101 |
L Huang, Q H Chang, G L Guo, Y Liu, Y Q Xie, T Wang, B Ling, H F Yang. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551–556
https://doi.org/10.1016/j.carbon.2011.09.012
|
| 102 |
H B Li, A J Page, Y Wang, S Irle, K Morokuma. Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications (Cambridge), 2012, 48(64): 7937–7939
https://doi.org/10.1039/c2cc32995f
pmid: 22763640
|
| 103 |
V P Verma, S Das, I Lahiri, W Choi. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010, 96(20): 203108
https://doi.org/10.1063/1.3431630
|
| 104 |
G Kalita, M Matsushima, H Uchida, K Wakita, M Umeno. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
https://doi.org/10.1039/c0jm01352h
|
| 105 |
Y Nagai, H Sugime, S Noda. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201: 319–324
https://doi.org/10.1016/j.ces.2019.02.038
|
| 106 |
S Bae, H Kim, Y Lee, X Xu, J S Park, Y Zheng, J Balakrishnan, T Lei, H R Kim, Y I Song, Y J Kim, K S Kim, B Ozyilmaz, J H Ahn, B H Hong, S Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132
pmid: 20562870
|
| 107 |
Y Kim, S Kim, W H Lee, H. KimDirect transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27: 1685–1693
https://doi.org/10.1007/s10570-019-02902-2
|
| 108 |
M Kim, A Shah, C Li, P Mustonen, J Susoma, F Manoocheri, J Riikonen, H. Lipsanen Direct transfer of wafer-scale graphene films. 2D Materials, 2017, 4(3): 035004
|
| 109 |
I J Park, T I Kim, T Yoon, S Kang, H Cho, N S Cho, J I Lee, T S Kim, S Y Choi. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Advanced Functional Materials, 2018, 28(10): 1704435
https://doi.org/10.1002/adfm.201704435
|
| 110 |
X Liang, B A Sperling, I Calizo, G Cheng, C A Hacker, Q Zhang, Y Obeng, K Yan, H Peng, Q Li, X Zhu, H Yuan, A R Walker, Z Liu, L M Peng, C A Richter. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144–9153
https://doi.org/10.1021/nn203377t
pmid: 21999646
|
| 111 |
X Li, Y Zhu, W Cai, M Borysiak, B Han, D Chen, R D Piner, L Colombo, R S Ruoff. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 2009, 9(12): 4359–4363
https://doi.org/10.1021/nl902623y
pmid: 19845330
|
| 112 |
L Gammelgaard, J M Caridad, A Cagliani, D M A Mackenzie, D H Petersen, T J Booth, P. Bøggild Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1(3): 035005
|
| 113 |
J Chan, A Venugopal, A Pirkle, S McDonnell, D Hinojos, C W Magnuson, R S Ruoff, L Colombo, R M Wallace, E M Vogel. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano, 2012, 6(4): 3224–3229
https://doi.org/10.1021/nn300107f
pmid: 22390298
|
| 114 |
Y C Lin, C C Lu, C H Yeh, C Jin, K Suenaga, P W Chiu. Graphene annealing: how clean can it be? Nano Letters, 2012, 12(1): 414–419
https://doi.org/10.1021/nl203733r
pmid: 22149394
|
| 115 |
Z Zhang, J Du, D Zhang, H Sun, L Yin, L Ma, J Chen, D Ma, H M Cheng, W Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
https://doi.org/10.1038/ncomms14560
pmid: 28233778
|
| 116 |
Y C Lin, C Jin, J C Lee, S F Jen, K Suenaga, P W Chiu. Clean transfer of graphene for isolation and suspension. ACS Nano, 2011, 5(3): 2362–2368
https://doi.org/10.1021/nn200105j
pmid: 21351739
|
| 117 |
M H Kang, L O Prieto López, B Chen, K Teo, J A Williams, W I Milne, M T Cole. Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 2016, 8(34): 22506–22515
https://doi.org/10.1021/acsami.6b06557
pmid: 27482734
|
| 118 |
J Song, F Y Kam, R Q Png, W L Seah, J M Zhuo, G K Lim, P K H Ho, L L Chua. A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 2013, 8(5): 356–362
https://doi.org/10.1038/nnano.2013.63
pmid: 23624698
|
| 119 |
J C Yoon, P Thiyagarajan, H J Ahn, J H Jang. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances, 2015, 5(77): 62772–62777
https://doi.org/10.1039/C5RA11100E
|
| 120 |
L Qin, B Kattel, T R Kafle, M Alamri, M Gong, M Panth, Y Hou, J Wu, W Chan. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Advanced Materials Interfaces, 2019, 6(1): 1801419
https://doi.org/10.1002/admi.201801419
|
| 121 |
B N Chandrashekar, B Deng, A S Smitha, Y Chen, C Tan, H Zhang, H Peng, Z Liu. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Advanced Materials, 2015, 27(35): 5210–5216
https://doi.org/10.1002/adma.201502560
pmid: 26256002
|
| 122 |
M Marchena, F Wagner, T Arliguie, B Zhu, B Johnson, M Fernández, T L Chen, T Chang, R Lee, V Pruneri, P Mazumder. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials, 2018, 5(3): 035022
|
| 123 |
A Shivayogimath, P R Whelan, D M A Mackenzie, B Luo, D Huang, D Luo, M Wang, L Gammelgaard, H Shi, R S Ruoff, P Bøggild, T J Booth. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chemistry of Materials, 2019, 31(7): 2328–2336
https://doi.org/10.1021/acs.chemmater.8b04196
|
| 124 |
J Kang, S Hwang, J H Kim, M H Kim, J Ryu, S J Seo, B H Hong, M K Kim, J B Choi. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano, 2012, 6(6): 5360–5365
https://doi.org/10.1021/nn301207d
pmid: 22631604
|
| 125 |
G J M Fechine, I Martin-Fernandez, G Yiapanis, R Bentini, E S Kulkarni, R V Bof de Oliveira, X Hu, I Yarovsky, A H Castro Neto, B Özyilmaz. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83: 224–231
https://doi.org/10.1016/j.carbon.2014.11.038
|
| 126 |
C T Cherian, F Giustiniano, I Martin-Fernandez, H Andersen, J Balakrishnan, B Özyilmaz. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small, 2015, 11(2): 189–194
https://doi.org/10.1002/smll.201402024
pmid: 25179223
|
| 127 |
Y Wang, Y Zheng, X Xu, E Dubuisson, Q Bao, J Lu, K P Loh. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano, 2011, 5(12): 9927–9933
https://doi.org/10.1021/nn203700w
pmid: 22034835
|
| 128 |
F Pizzocchero, B S Jessen, P R Whelan, N Kostesha, S Lee, J D Buron, I Petrushina, M B Larsen, P Greenwood, W J Cha, K Teo, P U Jepsen, J Hone, P Bøggild, T J Booth. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85: 397–405
https://doi.org/10.1016/j.carbon.2014.12.061
|
| 129 |
Z Zhan, J Sun, L Liu, E Wang, Y Cao, N Lindvall, G Skoblin, A Yurgens. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(33): 8634
https://doi.org/10.1039/C5TC01771H
|
| 130 |
J Sun, Y Chen, X Cai, B Ma, Z Chen, M K Priydarshi, K Chen, T Gao, X Song, Q Ji, X Guo, D Zou, Y Zhang, Z Liu. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8(11): 3496–3504
https://doi.org/10.1007/s12274-015-0849-0
|
| 131 |
D Wei, L Peng, M Li, H Mao, T Niu, C Han, W Chen, A T S Wee. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS Nano, 2015, 9(1): 164–171
https://doi.org/10.1021/nn505214f
pmid: 25581685
|
| 132 |
S Zheng, G Zhong, X Wu, L D’Arsiè, J Robertson. Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7: 33185–33193
|
| 133 |
M E Schmidt, C Xu, M Cooke, H Mizuta, H M H Chong. Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline grapheme. Materials Research Express, 2014, 1(2): 025031
https://doi.org/10.1088/2053-1591/1/2/025031
|
| 134 |
N Wei, Q Li, S Cong, H Ci, Y Song, Q Yang, C Lu, C Li, G Zou, J Sun, Y Zhang, Z Liu. Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(9): 4813–4822
https://doi.org/10.1039/C9TA00299E
|
| 135 |
Z Chen, Y Liu, W Zhang, X Guo, L Yin, Y Wang, L Li, Y Zhang, Z Wang, T Zhang. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes. Materials Chemistry and Physics, 2019, 221: 78–88
https://doi.org/10.1016/j.matchemphys.2018.09.039
|
| 136 |
R Vishwakarma, R Zhu, A A Abuelwafa, Y Mabuchi, S Adhikari, S Ichimura, T Soga, M Umeno. Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD. ACS Omega, 2019, 4(6): 11263–11270
https://doi.org/10.1021/acsomega.9b00988
pmid: 31460228
|
| 137 |
B J Park, J S Choi, J H Eom, H Ha, H Y Kim, S Lee, H Shin, S G Yoon. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano, 2018, 12(2): 2008–2016
https://doi.org/10.1021/acsnano.8b00015
pmid: 29390178
|
| 138 |
V D Tran, S V N Pammi, B J Park, Y Han, C Jeon, S G Yoon. Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65: 104018
https://doi.org/10.1016/j.nanoen.2019.104018
|
| 139 |
K C Kwon, B J Kim, J L Lee, S Y Kim. Effect of anions in Au complexes on doping and degradation of graphene. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(13): 2463–2469
https://doi.org/10.1039/c3tc00046j
|
| 140 |
C W Jang, J M Kim, J H Kim, D H Shin, S Kim, S H Choi. Degradation reduction and stability enhancement of p-type graphene by RhCl3 doping. Journal of Alloys and Compounds, 2015, 621: 1–6
https://doi.org/10.1016/j.jallcom.2014.09.182
|
| 141 |
J B Bult, R Crisp, C L Perkins, J L Blackburn. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano, 2013, 7(8): 7251–7261
https://doi.org/10.1021/nn402673z
pmid: 23859709
|
| 142 |
H Liu, Y Liu, D Zhu. Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21(10): 3335–3345
https://doi.org/10.1039/C0JM02922J
|
| 143 |
M S Chae, T H Lee, K R Son, Y W Kim, K S Hwang, T G Kim. Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons, 2019, 4(3): 610–618
https://doi.org/10.1039/C8NH00374B
|
| 144 |
X Zhang, A Hsu, H Wang, Y Song, J Kong, M S Dresselhaus, T Palacios. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270
https://doi.org/10.1021/nn4026756
pmid: 23844715
|
| 145 |
L Gomez De Arco, Y Zhang, C W Schlenker, K Ryu, M E Thompson, C Zhou. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
https://doi.org/10.1021/nn901587x
pmid: 20394355
|
| 146 |
A Reina, X Jia, J Ho, D Nezich, H Son, V Bulovic, M S Dresselhaus, J Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v
pmid: 19046078
|
| 147 |
R Zan, A Altuntepe. Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 2020, 1199: 127026
https://doi.org/10.1016/j.molstruc.2019.127026
|
| 148 |
K K Kim, A Reina, Y Shi, H Park, L J Li, Y H Lee, J Kong. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205
https://doi.org/10.1088/0957-4484/21/28/285205
pmid: 20585167
|
| 149 |
H Bi, F Huang, J Liang, X Xie, M Jiang. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials, 2011, 23(28): 3202–3206
https://doi.org/10.1002/adma.201100645
pmid: 21626576
|
| 150 |
C Guo, X Kong, H Ji. Hot-roll-pressing mediated transfer of chemical vapor deposition graphene for transparent and flexible touch screen with low sheet-resistance. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4337–4342
https://doi.org/10.1166/jnn.2018.15195
pmid: 29442784
|
| 151 |
J H Chang, W H Lin, P C Wang, J I Taur, T A Ku, W T Chen, S J Yan, C I Wu. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5(1): 9693
https://doi.org/10.1038/srep09693
pmid: 25892370
|
| 152 |
S Tongay, K Berke, M Lemaitre, Z Nasrollahi, D B Tanner, A F Hebard, B R Appleton. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology, 2011, 22(42): 425701
https://doi.org/10.1088/0957-4484/22/42/425701
pmid: 21934196
|
| 153 |
S C Xu, B Y Man, S Z Jiang, C S Chen, C Yang, M Liu, X G Gao, Z C Sun, C Zhang. Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 2013, 102(15): 151902
https://doi.org/10.1063/1.4802079
|
| 154 |
H Park, J A Rowehl, K K Kim, V Bulovic, J Kong. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
https://doi.org/10.1088/0957-4484/21/50/505204
pmid: 21098945
|
| 155 |
Y Galagan, A Mescheloff, S C Veenstra, R Andriessen, E A Katz. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 2015, 17(5): 3891–3897
https://doi.org/10.1039/C4CP05571C
pmid: 25560492
|
| 156 |
C L Chochos, M Spanos, A Katsouras, E Tatsi, S Drakopoulou, V G Gregoriou, A Avgeropoulos. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91: 51–79
https://doi.org/10.1016/j.progpolymsci.2019.02.002
|
| 157 |
J Zhao, Y Li, G Yang, K Jiang, H Lin, H Ade, W Ma, H Yan. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 15027
https://doi.org/10.1038/nenergy.2015.27
|
| 158 |
W Zhao, S Li, S Zhang, X Liu, J Hou. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials, 2017, 29(2): 1604059
https://doi.org/10.1002/adma.201604059
pmid: 27813280
|
| 159 |
C Sun, F Pan, H Bin, J Zhang, L Xue, B Qiu, Z Wei, Z G Zhang, Y Li. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9(1): 743
https://doi.org/10.1038/s41467-018-03207-x
pmid: 29467393
|
| 160 |
G Nogay, F Sahli, J Werner, R Monnard, M Boccard, M Despeisse, F J Haug, Q Jeangros, A Ingenito, C Ballif. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019, 4(4): 844–845
https://doi.org/10.1021/acsenergylett.9b00377
|
| 161 |
L La Notte, G V Bianco, A L Palma, A Di Carlo, G Bruno, A Reale. Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129: 878–883
https://doi.org/10.1016/j.carbon.2017.08.001
|
| 162 |
H Park, S Chang, X Zhou, J Kong, T Palacios, S Gradečak. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 2014, 14(9): 5148–5154
https://doi.org/10.1021/nl501981f
pmid: 25141259
|
| 163 |
J Liu, M Durstock, L Dai. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy & Environmental Science, 2014, 7(4): 1297–1306
https://doi.org/10.1039/C3EE42963F
|
| 164 |
A Capasso, L Salamandra, G Faggio, T Dikonimos, F Buonocore, V Morandi, L Ortolani, N Lisi. Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces, 2016, 8(36): 23844–23853
https://doi.org/10.1021/acsami.6b06749
pmid: 27575588
|
| 165 |
D M A Mackenzie, J D Buron, P R Whelan, B S Jessen, A Silajdźić, A Pesquera, A Centeno, A Zurutuza, P Bøggild, D H Petersen. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials, 2015, 2(4): 045003
|
| 166 |
L La Notte, E Villari, A L Palma, A Sacchetti, M Michela Giangregorio, G Bruno, A Di Carlo, G V Bianco, A Reale. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9(1): 62–69
https://doi.org/10.1039/C6NR06156G
pmid: 27906382
|
| 167 |
L Gomez De Arco, Y Zhang, C W Schlenker, K Ryu, M E Thompson, C Zhou. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
https://doi.org/10.1021/nn901587x
pmid: 20394355
|
| 168 |
H Park, R M Howden, M C Barr, V Bulović, K Gleason, J Kong. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano, 2012, 6(7): 6370–6377
https://doi.org/10.1021/nn301901v
pmid: 22724887
|
| 169 |
B H Lee, J H Lee, Y H Kahng, N Kim, Y J Kim, J Lee, T Lee, K Lee. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Advanced Functional Materials, 2014, 24(13): 1847–1856
https://doi.org/10.1002/adfm.201302928
|
| 170 |
L La Notte, P Cataldi, L Ceseracciu, I S Bayer, A Athanassiou, S Marras, E Villari, F Brunetti, A Reale. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7: 105–112
https://doi.org/10.1016/j.mtener.2017.12.010
|
| 171 |
B Rezaei, F Afshar-Taromi, Z Ahmadi, S Amiri Rigi, N Yousefi. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Materials Chemistry and Physics, 2019, 228: 325–335
https://doi.org/10.1016/j.matchemphys.2019.02.084
|
| 172 |
P C Mahakul, K Sa, B Das, B V R S Subramaniam, S Saha, B Moharana, J Raiguru, S Dash, J Mukherjee, P Mahanandia. Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science, 2017, 52(10): 5696–5707
https://doi.org/10.1007/s10853-017-0806-2
|
| 173 |
A G Ricciardulli, S Yang, G J A H Wetzelaer, X Feng, P W M Blom. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Advanced Functional Materials, 2018, 28(14): 1706010
https://doi.org/10.1002/adfm.201706010
|
| 174 |
M Wang, H Yu, X Ma, Y Yao, L Wang, L Liu, K Cao, S Liu, C Dong, B Zhao, C Song, S Chen, W Huang. Copper oxide-modified graphene anode and its application in organic photovoltaic cells. Optics Express, 2018, 26(18): A769–A776
https://doi.org/10.1364/OE.26.00A769
pmid: 30184836
|
| 175 |
H Nan, J Han, Q Luo, X Yin, Y Zhou, Z Yao, X Zhao, X Li, H Lin. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437: 227–232
https://doi.org/10.1016/j.apsusc.2017.12.175
|
| 176 |
R Sankar Ganesh, K Silambarasan, E Durgadevi, M Navaneethan, S Ponnusamy, C Y Kong, C Muthamizhchelvan, Y Shimura, Y Hayakawa. Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells. Applied Surface Science, 2019, 480: 177–185
https://doi.org/10.1016/j.apsusc.2019.02.251
|
| 177 |
K Silambarasan, J Archana, S Athithya, S Harish, R Sankar Ganesh, M Navaneethan, S Ponnusamy, C Muthamizhchelvan, K Hara, Y Hayakawa. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science, 2020, 501: 144010
https://doi.org/10.1016/j.apsusc.2019.144010
|
| 178 |
V Murugadoss, P Panneerselvam, C Yan, Z Guo, S Angaiah. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta, 2019, 312: 157–167
https://doi.org/10.1016/j.electacta.2019.04.142
|
| 179 |
S Rehman, M Noman, A D Khan, A Saboor, M S Ahmad, H U Khan. Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttgart), 2020, 202: 163591
https://doi.org/10.1016/j.ijleo.2019.163591
|
| 180 |
S W Chong, C W Lai, J C Juan, B F Leo. An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy, 2019, 191: 663–671
https://doi.org/10.1016/j.solener.2019.08.065
|
| 181 |
L Wei, P Wang, Y Yang, Z Zhan, Y Dong, W Song, R Fan. Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorganic Chemistry Frontiers, 2018, 5(1): 54–62
https://doi.org/10.1039/C7QI00503B
|
| 182 |
R Sasikumar, T W Chen, S M Chen, S P Rwei, S K Ramaraj. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode. Optical Materials, 2018, 79: 345–352
https://doi.org/10.1016/j.optmat.2018.03.059
|
| 183 |
S N Sadikin, M Y A Rahman, A A Umar, T H T Aziz. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures, 2019, 128: 92–98
https://doi.org/10.1016/j.spmi.2019.01.014
|
| 184 |
NREL. Best research-cell efficiencies (National Renewable Energy Laboratory: Golden, Colorado), 2019
|
| 185 |
M Bag, L A Renna, R Y Adhikari, S Karak, F Liu, P M Lahti, T P Russell, M T Tuominen, D Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. Journal of the American Chemical Society, 2015, 137(40): 13130–13137
https://doi.org/10.1021/jacs.5b08535
pmid: 26414066
|
| 186 |
J P Bastos, U W Paetzold, R Gehlhaar, W Qiu, D Cheyns, S Surana, V Spampinato, T Aernouts, J Poortmans. Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Advanced Energy Materials, 2018, 8(23): 1800554
https://doi.org/10.1002/aenm.201800554
|
| 187 |
S R Raga, M C Jung, M V Lee, M R Leyden, Y Kato, Y Qi. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chemistry of Materials, 2015, 27(5): 1597–1603
https://doi.org/10.1021/cm5041997
|
| 188 |
J A Christians, P A Miranda Herrera, P V Kamat. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 2015, 137(4): 1530–1538
https://doi.org/10.1021/ja511132a
pmid: 25590693
|
| 189 |
K Domanski, J P Correa-Baena, N Mine, M K Nazeeruddin, A Abate, M Saliba, W Tress, A Hagfeldt, M Grätzel. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306–6314
https://doi.org/10.1021/acsnano.6b02613
pmid: 27187798
|
| 190 |
A Guerrero, J You, C Aranda, Y S Kang, G Garcia-Belmonte, H Zhou, J Bisquert, Y Yang. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1): 218–224
https://doi.org/10.1021/acsnano.5b03687
pmid: 26679510
|
| 191 |
R Wang, M Mujahid, Y Duan, Z Wang, J Xue, Y Yang. A review of perovskites solar cell stability. Advanced Functional Materials, 2019, 29(47): 1808843
https://doi.org/10.1002/adfm.201808843
|
| 192 |
G Jeong, D Koo, J Seo, S Jung, Y Choi, J Lee, H Park. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Letters, 2020, 20(5): 3718–3727
https://doi.org/acs.nanolett.0c00663
|
| 193 |
M M Tavakoli, R Tavakoli, P Yadav, J Kong. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(2): 679–686
https://doi.org/10.1039/C8TA10857A
|
| 194 |
J M Kim, C W Jang, J H Kim, S Kim, S H Choi. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Applied Surface Science, 2018, 455: 1131–1136
https://doi.org/10.1016/j.apsusc.2018.06.068
|
| 195 |
E Jokar, Z Y Huang, S Narra, C Y Wang, V Kattoor, C C Chung, E W G Diau. Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Advanced Energy Materials, 2018, 8(3): 1701640
https://doi.org/10.1002/aenm.201701640
|
| 196 |
S Cogal, L Calio, G Celik Cogal, M Salado, S Kazim, L Oksuz, S Ahmad, A Uygun Oksuz. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75(10): 4531–4545
https://doi.org/10.1007/s00289-018-2275-4
|
| 197 |
E Nouri, M R Mohammadi, P Lianos. Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126: 208–214
https://doi.org/10.1016/j.carbon.2017.10.015
|
| 198 |
X Zhao, L Tao, H Li, W Huang, P Sun, J Liu, S Liu, Q Sun, Z Cui, L Sun, Y Shen, Y Yang, M Wang. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Letters, 2018, 18(4): 2442–2449
https://doi.org/10.1021/acs.nanolett.8b00025
pmid: 29539264
|
| 199 |
P O’Keeffe, D Catone, A Paladini, F Toschi, S Turchini, L Avaldi, F Martelli, A Agresti, S Pescetelli, A E Del Rio Castillo, F Bonaccorso, A Di Carlo. Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers. Nano Letters, 2019, 19(2): 684–691
https://doi.org/10.1021/acs.nanolett.8b03685
pmid: 30669832
|
| 200 |
J Yoon, H Sung, G Lee, W Cho, N Ahn, H S Jung, M Choi. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science, 2017, 10(1): 337–345
https://doi.org/10.1039/C6EE02650H
|
| 201 |
J H Heo, D H Shin, D H Song, D H Kim, S J Lee, S H Im. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(18): 8251–8258
https://doi.org/10.1039/C8TA02672F
|
| 202 |
C Zhang, S Wang, H Zhang, Y Feng, W Tian, Y Yan, J Bian, Y Wang, S Jin, S M Zakeeruddin, M Grätzel, Y Shi. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 2019, 12(12): 3585–3594
https://doi.org/10.1039/C9EE02391G
|
| 203 |
H Sung, N Ahn, M S Jang, J K Lee, H Yoon, N G Park, M Choi. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials, 2016, 6(3): 1501873
https://doi.org/10.1002/aenm.201501873
|
| 204 |
W Fu, L Jiang, E P van Geest, L M C Lima, G F Schneider. Sensing at the surface of graphene field-effect transistors. Advanced Materials, 2017, 29(6): 1603610
https://doi.org/10.1002/adma.201603610
pmid: 27896865
|
| 205 |
S Afsahi, M B Lerner, J M Goldstein, J Lee, X Tang, D A Bagarozzi Jr, D Pan, L Locascio, A Walker, F Barron, B R Goldsmith. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100: 85–88
https://doi.org/10.1016/j.bios.2017.08.051
pmid: 28865242
|
| 206 |
S Chen, Y Sun, Y Xia, K Lv, B Man, C Yang. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors & Bioelectronics, 2020, 156: 112128
https://doi.org/10.1016/j.bios.2020.112128
pmid: 32174556
|
| 207 |
M T Hwang, M Heiranian, Y Kim, S You, J Leem, A Taqieddin, V Faramarzi, Y Jing, I Park, A M van der Zande, S Nam, N R Aluru, R Bashir. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11(1): 1543
https://doi.org/10.1038/s41467-020-15330-9
pmid: 32210235
|
| 208 |
S Kim, L Xing, A E Islam, M S Hsiao, Y Ngo, O M Pavlyuk, R L Martineau, C M Hampton, C Crasto, J Slocik, M P Kadakia, J A Hagen, N Kelley-Loughnane, R R Naik, L F Drummy. In operando observation of neuropeptide capture and release on graphene field-effect transistor biosensors with picomolar sensitivity. ACS Applied Materials & Interfaces, 2019, 11(15): 13927–13934
https://doi.org/10.1021/acsami.8b20498
pmid: 30884221
|
| 209 |
G Seo, G Lee, M J Kim, S H Baek, M Choi, K B Ku, C S Lee, S Jun, D Park, H G Kim, S J Kim, J O Lee, B T Kim, E C Park, S I Kim. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4): 5135–5142
https://doi.org/10.1021/acsnano.0c02823
pmid: 32293168
|
| 210 |
P T K Loan, D Wu, C Ye, X Li, V T Tra, Q Wei, L Fu, A Yu, L J Li, C T Lin. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors & Bioelectronics, 2018, 99: 85–91
https://doi.org/10.1016/j.bios.2017.07.045
pmid: 28743083
|
| 211 |
H Zhan, J Cervenka, S Prawer, D J Garrett. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale, 2018, 10(3): 930–935
https://doi.org/10.1039/C7NR06330J
pmid: 29265123
|
| 212 |
N Li, T Tang, J Li, L Luo, C Li, J Shen, J Yao. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. Journal of Magnetism and Magnetic Materials, 2019, 484: 445–450
https://doi.org/10.1016/j.jmmm.2019.04.003
|
| 213 |
X Zhou, L Sheng, X Ling. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Scientific Reports, 2018, 8(1): 1221
https://doi.org/10.1038/s41598-018-19713-3
pmid: 29352177
|
| 214 |
Z Zhao, H Yang, W Zhao, S Deng, K Zhang, R Deng, Q He, H Gao, J Li. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2020, 8(16): 3623–3630
https://doi.org/10.1039/C9TB02388G
pmid: 31934712
|
| 215 |
K X Xie, S H Cao, Z C Wang, Y H Weng, S X Huo, Y Y Zhai, M Chen, X H Pan, Y Q Li. Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B, Chemical, 2017, 253: 804–808
https://doi.org/10.1016/j.snb.2017.06.099
|
| 216 |
L Sun, Y Zhang, Y Wang, Y Yang, C Zhang, X Weng, S Zhu, X Yuan. Real-time subcellular imaging based on graphene biosensors. Nanoscale, 2018, 10(4): 1759–1765
https://doi.org/10.1039/C7NR07479D
pmid: 29308810
|
| 217 |
Y Xu, R Zhuang, Z Zhang, R Yi, X Guo, Z Qi. Single-layer graphene-based surface plasmon resonance biosensors for immunization study. In: Proceedings of the 8th Applied Optics and Photonics China (AOPC 2019), Optical Spectroscopy Imaging, 2019, 11337
|
| 218 |
M S Rahman, M S Anower, M R Hasan, M B Hossain, M I Haque. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396: 36–43
https://doi.org/10.1016/j.optcom.2017.03.035
|
| 219 |
K K Gopalan, B Paulillo, D M A Mackenzie, D Rodrigo, N Bareza, P R Whelan, A Shivayogimath, V Pruneri. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918
https://doi.org/10.1021/acs.nanolett.8b02613
pmid: 30114919
|
| 220 |
P H Siegel. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438–2447
https://doi.org/10.1109/TMTT.2004.835916
|
| 221 |
P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
|
| 222 |
K Sengupta. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In: Proceedings of IEEE International Conference on Communications, Workshop ICC Workshop, 2019
|
| 223 |
K Ajito, Y Ueno. THz chemical imaging for biological applications. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 293–300
https://doi.org/10.1109/TTHZ.2011.2159562
|
| 224 |
G Auton, D B But, J Zhang, E Hill, D Coquillat, C Consejo, P Nouvel, W Knap, L Varani, F Teppe, J Torres, A Song. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters, 2017, 17(11): 7015–7020
https://doi.org/10.1021/acs.nanolett.7b03625
pmid: 29016145
|
| 225 |
X Yang, A Vorobiev, A Generalov, M A Andersson, J Stake. A flexible graphene terahertz detector. Applied Physics Letters, 2017, 111(2): 021102
https://doi.org/10.1063/1.4993434
|
| 226 |
X X Yang, J D Sun, H Qin, L Lv, L N Su, B Yan, X X Li, Z P Zhang, J Y Fang. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 2015, 24(4): 047206
https://doi.org/10.1088/1674-1056/24/4/047206
|
| 227 |
F Valmorra, G Scalari, C Maissen, W Fu, C Schönenberger, J W Choi, H G Park, M Beck, J Faist. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Letters, 2013, 13(7): 3193–3198
https://doi.org/10.1021/nl4012547
pmid: 23802181
|
| 228 |
A A Generalov, M A Andersson, X Yang, A Vorobiev, J A Stake. 400-GHz graphene FET detector. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 614–616
https://doi.org/10.1109/TTHZ.2017.2722360
|
| 229 |
N Kakenov, M S Ergoktas, O Balci, C Kocabas. Graphene based terahertz phase modulators. 2D Materials, 2018, 5(3): 035018
|
| 230 |
J W Shin, H Cho, J Lee, J Moon, J H Han, K Kim, S Cho, J I Lee, B H Kwon, D H Cho, K M Lee, M Suemitsu, N S Cho. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes. Optics Express, 2018, 26(2): 617–626
https://doi.org/10.1364/OE.26.000617
pmid: 29401944
|
| 231 |
J W Shin, J H Han, H Cho, J Moon, B H Kwon, S Cho, T Yoon, T S Kim, M Suemitsu, J I Lee, N Cho S. Display process compatible accurate graphene patterning for OLED applications. 2D Materials, 2017, 5(1): 014003
|
| 232 |
J Lee, T H Han, M H Park, D Y Jung, J Seo, H K Seo, H Cho, E Kim, J Chung, S Y Choi, T S Kim, T W Lee, S Yoo. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7(1): 11791
https://doi.org/10.1038/ncomms11791
pmid: 27250743
|
| 233 |
O E Kwon, J W Shin, H Oh, C Kang, H Cho, B H Kwon, C W Byun, J H Yang, K M Lee, J H Han, N Sung Cho, J Hyuk Yoon, S Jin Chae, J Sung Park, H Lee, C S Hwang, J Moon, J I Lee. A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display, 2020, 21(1): 49–56
https://doi.org/10.1080/15980316.2019.1680452
|
| 234 |
Z Zhang, J Du, D Zhang, H Sun, L Yin, L Ma, J Chen, D Ma, H M Cheng, W Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
https://doi.org/10.1038/ncomms14560
pmid: 28233778
|
| 235 |
E Torres Alonso, G Karkera, G F Jones, M F Craciun, S Russo. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Applied Materials & Interfaces, 2016, 8(26): 16541–16545
https://doi.org/10.1021/acsami.6b04042
pmid: 27299371
|
| 236 |
Z G Wang, Y F Chen, P J Li, X Hao, J B Liu, R Huang, Y R Li. Flexible graphene-based electroluminescent devices. ACS Nano, 2011, 5(9): 7149–7154
https://doi.org/10.1021/nn2018649
pmid: 21842851
|
| 237 |
H Shin, B K Sharma, S W Lee, J B Lee, M Choi, L Hu, C Park, J H Choi, T W Kim, J H Ahn. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Applied Materials & Interfaces, 2019, 11(15): 14222–14228
https://doi.org/10.1021/acsami.8b22135
pmid: 30912424
|
| 238 |
A Chandran, T Joshi, I Sharma, K M Subhedar, D S Mehta, A M Biradar. Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. Journal of Molecular Liquids, 2019, 279: 294–298
https://doi.org/10.1016/j.molliq.2019.01.140
|
| 239 |
T Hu, H Wang, Y Shao, X Zhang, G Liu, M Li, H Chen, Y Lee. 66-3: a high reliability PEDOT:PSS/graphene transparent electrode for liquid crystal displays. SID Symposium Digest of Technical Papers, 2017, 48(1): 972–975
|
| 240 |
S Petrov, V Marinova, S H Lin, C M Chang, Y H Lin, K Y Hsu. Large scale liquid crystal device with graphene-based electrodes. Optical Data Processing and Storage, 2017, 3(1): 114–118
https://doi.org/10.1515/odps-2017-0015
|
| 241 |
N Mustapha, Z Fekkai, K H Ibnaouf. Improved performance of organic light-emitting diodes based on oligomer thin films with graphene. Journal of Electronic Materials, 2020, 49(3): 2203–2210
https://doi.org/10.1007/s11664-019-07903-2
|
| 242 |
Y Fu, J Sun, Z Du, W Guo, C Yan, F Xiong, L Wang, Y Dong, C Xu, J Deng, T Guo, Q F Yan. Monolithic integrated device of GaN micro-LED with graphene transparent electrode and graphene active-matrix driving transistor. Materials (Basel), 2019, 12(3): 428
https://doi.org/10.3390/ma12030428
pmid: 30704131
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|