Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 265-271    https://doi.org/10.1007/s12200-020-1041-z
RESEARCH ARTICLE
Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells
Shaiqiang MU1,2, Qiufeng YE2,3, Xingwang ZHANG2,3, Shihua HUANG1(), Jingbi YOU2,3()
1. Physics Department, Zhejiang Normal University, Jinhua 321004, China
2. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1093 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cesium-based inorganic perovskite solar cells (PSCs) are paid more attention because of their potential thermal stability. However, prevalent salt-doped 2,2′,7,7′-tetrakis(N,N-dipmethoxyphenylamine)9,9′-spirobifluorene (Spiro-OMeTAD) as hole-transport materials (HTMs) for a high-efficiency inorganic device has an unfortunate defective thermal stability. In this study, we apply poly(3-hexylthiophene-2,5-diyl) (P3HT) as the HTM and design all-inorganic PSCs with an indium tin oxide (ITO)/SnO2/LiF/CsPbI3xBrx/P3HT/Au structure. As a result, the CsPbI3xBrx PSCs achieve an excellent performance of 15.84%. The P3HT HTM-based device exhibits good photo-stability, maintaining ~80% of their initial power conversion efficiency over 280 h under one Sun irradiation. In addition, they also show better thermal stability compared with the traditional HTM Spiro-OMeTAD.

Keywords inorganic perovskite solar cell (PSC)      hole-transport material (HTM)      stability     
Corresponding Author(s): Shihua HUANG,Jingbi YOU   
Just Accepted Date: 19 May 2020   Online First Date: 12 June 2020    Issue Date: 27 September 2020
 Cite this article:   
Shaiqiang MU,Qiufeng YE,Xingwang ZHANG, et al. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1041-z
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/265
Fig.1  (a) Device structure of the CsPbI 3xBrx PSCs based on P3HT. (b) Energy band diagram of CsPbI3xBrx PSCs based on P3HT. (c) Steady-state PL spectra of CsPbI3xBrx perovskite (PSK), PSK/Spiro-OMeTAD, and PSK/P3HT prepared on glass. (d) Time-resolved PL spectra of CsPbI3xBrx PSK, PSK/Spiro-OMeTAD, and PSK/P3HT prepared on glass
Fig.2  (a)  J–V curve of the inorganic CsPbI3xBrx PSCs based on different HTMs. (b) Reverse- and forward-scan J–V curve from the inorganic CsPbI3xBrx PSCs using P3HT as the hole-transport layer. (c) Typical EQE for the devices using P3HT as the hole-transport layer. (d) Efficiency histogram of the inorganic CsPbI3xBrx PSCs using different HTM
Fig.3  (a) Relationship between  JSC vs light intensity for devices based on different HTMs. (b) VOC versus light intensity for the inorganic CsPbI3xBrx PSCs based on different HTMs
Fig.4  (a) Thermal stability of CsPbI 3xBrx PSCs under 85°C in N2 glove box. (b) Photo-stability of CsPbI3xBrx PSCs under continuous white light LED illumination (100 mW/cm2) in N2 glove box. (c) Long-term PCE stability of a CsPbI3xBrx PSCs without encapsulations stored in a dry glove box and tested once a week
1 A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of Applied Chemical Science, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r pmid: 19366264
2 National Renewable Energy Laboratory (NREL). Best Cell Efficiencies, available at the website of nrel.gov/pv/cell-efficiency (accessed: January 2019)
3 J H Im, I H Jang, N Pellet, M Grätzel, N G Park. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 2014, 9(11): 927–932
https://doi.org/10.1038/nnano.2014.181 pmid: 25173829
4 C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x pmid: 23834108
5 Q Dong, Y Fang, Y Shao, P Mulligan, J Qiu, L Cao, J Huang. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
https://doi.org/10.1126/science.aaa5760 pmid: 25636799
6 V D’Innocenzo, G Grancini, M J Alcocer, A R Kandada, S D Stranks, M M Lee, G Lanzani, H J Snaith, A Petrozza. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(4): 3586
https://doi.org/10.1038/ncomms4586 pmid: 24710005
7 H Zhu, K Miyata, Y Fu, J Wang, P P Joshi, D Niesner, K W Williams, S Jin, X Y Zhu. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 2016, 353(6306): 1409–1413
https://doi.org/10.1126/science.aaf9570 pmid: 27708033
8 K L Svane, A C Forse, C P Grey, G Kieslich, A K Cheetham, A Walsh, K T Butler. How strong is the hydrogen bond in hybrid perovskites? Journal of Physical Chemistry Letters, 2017, 8(24): 6154–6159
https://doi.org/10.1021/acs.jpclett.7b03106 pmid: 29216715
9 H Chen, S Xiang, W Li, H Liu, L Zhu, S Yang. Inorganic perovskite solar cells: a rapidly growing field. Solar RRL, 2018, 2(2): 1700188
https://doi.org/10.1002/solr.201700188
10 K M Sim, A Swarnkar, A, Chung D S Nag. Phase stabilized α-CsPbI3 perovskite nanocrystals for photodiode applications. Laser & Photonics Reviews, 2018, 12(1): 1700209
11 A Mei, X Li, L Liu, Z Ku, T Liu, Y Rong, M Xu, M Hu, J Chen, Y Yang, M Grätzel, H Han. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
https://doi.org/10.1126/science.1254763 pmid: 25035487
12 P Wang, X Zhang, Y Zhou, Q Jiang, Q Ye, Z Chu, X Li, X Yang, Z Yin, J You. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225
https://doi.org/10.1038/s41467-018-04636-4 pmid: 29884815
13 Y Wang, M I Dar, L K Ono, T Zhang, M Kan, Y Li, L Zhang, X Wang, Y Yang, X Gao, Y Qi, M Grätzel, Y Zhao. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies>18%. Science, 2019, 365(6453): 591–595
https://doi.org/10.1126/science.aav8680
14 K Wang, Z Jin, L Liang, H Bian, D Bai, H Wang, J Zhang, Q Wang, S Liu. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nature Communications, 2018, 9(1): 4544
https://doi.org/10.1038/s41467-018-06915-6 pmid: 30382108
15 R E Beal, D J Slotcavage, T Leijtens, A R Bowring, R A Belisle, W H Nguyen, G F Burkhard, E T Hoke, M D McGehee. Cesium lead halide perovskites with improved stability for tandem solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 746–751
https://doi.org/10.1021/acs.jpclett.6b00002 pmid: 26863290
16 Y Wang, T Zhang, M Kan, Y Zhao. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. Journal of the American Chemical Society, 2018, 140(39): 12345–12348
https://doi.org/10.1021/jacs.8b07927 pmid: 30247030
17 F Yang, D Hirotani, G Kapil, M A Kamarudin, C H Ng, Y Zhang, Q Shen, S Hayase. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angewandte Chemie International Edition, 2018, 130(39): 12927–12931
https://doi.org/10.1002/ange.201807270
18 S Sanchez, N Christoph, B Grobety, N Phung, U Steiner, M Saliba, A Abate. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Advanced Energy Materials, 2018, 8(30): 1802060
https://doi.org/10.1002/aenm.201802060
19 Q Zeng, X Zhang, X Feng, S Lu, Z Chen, X Yong, S A T Redfern, H Wei, H Wang, H Shen, W Zhang, W Zheng, H Zhang, J S Tse, B Yang. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
https://doi.org/10.1002/adma.201705393 pmid: 29333763
20 H Bian, D Bai, Z Jin, K Wang, L Liang, H Wang, J Zhang, Q Wang, S F Liu. Graded bandgap CsPbI2+xBr1-x, perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2(8): 1500–1510
https://doi.org/10.1016/j.joule.2018.04.012
21 A Swarnkar, A R Marshall, E M Sanehira, B D Chernomordik, D T Moore, J A Christians, T Chakrabarti, J M Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
https://doi.org/10.1126/science.aag2700 pmid: 27846497
22 J Liu, Y Wu, C Qin, X Yang, T Yasuda, A Islam, K Zhang, W Peng, W Chen, L Han. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science, 2014, 7(9): 2963–2967
https://doi.org/10.1039/C4EE01589D
23 M Franckevičius, A Mishra, F Kreuzer, J Luo, S M Zakeeruddin, M Gratzel. A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells. Materials Horizons, 2015, 2(6): 613–618
https://doi.org/10.1039/C5MH00154D
24 Y Liu, Q Chen, H S Duan, H Zhou, Y Yang, H Chen, S Luo, T B Song, L Dou, Z Hong, Y Yang. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11940–11947
https://doi.org/10.1039/C5TA02502H
25 E H Jung, N J Jeon, E Y Park, C S Moon, T J Shin, T Y Yang, J H Noh, J Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515
https://doi.org/10.1038/s41586-019-1036-3 pmid: 30918371
26 Q Ye, Y Zhao, S Mu, F Ma, F Gao, Z Chu, Z Yin, P Gao, X Zhang, J You. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced Materials, 2019, 31(49): e1905143
https://doi.org/10.1002/adma.201905143 pmid: 31631443
27 Y Shao, Z Xiao, C Bi, Y Yuan, J Huang. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5(1): 5784
https://doi.org/10.1038/ncomms6784 pmid: 25503258
28 Q Zeng, X Zhang, X Feng, S Lu, Z Chen, X Yong, S A T Redfern, H Wei, H Wang, H Shen, W Zhang, W Zheng, H Zhang, J S Tse, B Yang. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
https://doi.org/10.1002/adma.201705393 pmid: 29333763
29 Q Jiang, Y Zhao, X Zhang, X Yang, Y Chen, Z Chu, Q Ye, X Li, Z Yin, J You. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13(7): 460–466
https://doi.org/10.1038/s41566-019-0398-2
30 T Leijtens, I K Ding, T Giovenzana, J T Bloking, M D McGehee, A Sellinger. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano, 2012, 6(2): 1455–1462
https://doi.org/10.1021/nn204296b pmid: 22230653
31 A Abate, T Leijtens, S Pathak, J Teuscher, R Avolio, M E Errico, J Kirkpatrik, J M Ball, P Docampo, I McPherson, H J Snaith. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15(7): 2572–2579
https://doi.org/10.1039/c2cp44397j pmid: 23310946
32 N H Tiep, Z L Ku, H J Fan. Recent advances in improving the stability of perovskite solar cells. Advanced Energy Materials, 2016, 6(3): 1501420
https://doi.org/10.1002/aenm.201501420
[1] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed