|
|
Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells |
Shaiqiang MU1,2, Qiufeng YE2,3, Xingwang ZHANG2,3, Shihua HUANG1( ), Jingbi YOU2,3( ) |
1. Physics Department, Zhejiang Normal University, Jinhua 321004, China 2. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Cesium-based inorganic perovskite solar cells (PSCs) are paid more attention because of their potential thermal stability. However, prevalent salt-doped 2,2′,7,7′-tetrakis(N,N-dipmethoxyphenylamine)9,9′-spirobifluorene (Spiro-OMeTAD) as hole-transport materials (HTMs) for a high-efficiency inorganic device has an unfortunate defective thermal stability. In this study, we apply poly(3-hexylthiophene-2,5-diyl) (P3HT) as the HTM and design all-inorganic PSCs with an indium tin oxide (ITO)/SnO2/LiF/CsPbI3−xBrx/P3HT/Au structure. As a result, the CsPbI3−xBrx PSCs achieve an excellent performance of 15.84%. The P3HT HTM-based device exhibits good photo-stability, maintaining ~80% of their initial power conversion efficiency over 280 h under one Sun irradiation. In addition, they also show better thermal stability compared with the traditional HTM Spiro-OMeTAD.
|
Keywords
inorganic perovskite solar cell (PSC)
hole-transport material (HTM)
stability
|
Corresponding Author(s):
Shihua HUANG,Jingbi YOU
|
Just Accepted Date: 19 May 2020
Online First Date: 12 June 2020
Issue Date: 27 September 2020
|
|
1 |
A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of Applied Chemical Science, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r
pmid: 19366264
|
2 |
National Renewable Energy Laboratory (NREL). Best Cell Efficiencies, available at the website of nrel.gov/pv/cell-efficiency (accessed: January 2019)
|
3 |
J H Im, I H Jang, N Pellet, M Grätzel, N G Park. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 2014, 9(11): 927–932
https://doi.org/10.1038/nnano.2014.181
pmid: 25173829
|
4 |
C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x
pmid: 23834108
|
5 |
Q Dong, Y Fang, Y Shao, P Mulligan, J Qiu, L Cao, J Huang. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
https://doi.org/10.1126/science.aaa5760
pmid: 25636799
|
6 |
V D’Innocenzo, G Grancini, M J Alcocer, A R Kandada, S D Stranks, M M Lee, G Lanzani, H J Snaith, A Petrozza. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(4): 3586
https://doi.org/10.1038/ncomms4586
pmid: 24710005
|
7 |
H Zhu, K Miyata, Y Fu, J Wang, P P Joshi, D Niesner, K W Williams, S Jin, X Y Zhu. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 2016, 353(6306): 1409–1413
https://doi.org/10.1126/science.aaf9570
pmid: 27708033
|
8 |
K L Svane, A C Forse, C P Grey, G Kieslich, A K Cheetham, A Walsh, K T Butler. How strong is the hydrogen bond in hybrid perovskites? Journal of Physical Chemistry Letters, 2017, 8(24): 6154–6159
https://doi.org/10.1021/acs.jpclett.7b03106
pmid: 29216715
|
9 |
H Chen, S Xiang, W Li, H Liu, L Zhu, S Yang. Inorganic perovskite solar cells: a rapidly growing field. Solar RRL, 2018, 2(2): 1700188
https://doi.org/10.1002/solr.201700188
|
10 |
K M Sim, A Swarnkar, A, Chung D S Nag. Phase stabilized α-CsPbI3 perovskite nanocrystals for photodiode applications. Laser & Photonics Reviews, 2018, 12(1): 1700209
|
11 |
A Mei, X Li, L Liu, Z Ku, T Liu, Y Rong, M Xu, M Hu, J Chen, Y Yang, M Grätzel, H Han. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
https://doi.org/10.1126/science.1254763
pmid: 25035487
|
12 |
P Wang, X Zhang, Y Zhou, Q Jiang, Q Ye, Z Chu, X Li, X Yang, Z Yin, J You. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225
https://doi.org/10.1038/s41467-018-04636-4
pmid: 29884815
|
13 |
Y Wang, M I Dar, L K Ono, T Zhang, M Kan, Y Li, L Zhang, X Wang, Y Yang, X Gao, Y Qi, M Grätzel, Y Zhao. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies>18%. Science, 2019, 365(6453): 591–595
https://doi.org/10.1126/science.aav8680
|
14 |
K Wang, Z Jin, L Liang, H Bian, D Bai, H Wang, J Zhang, Q Wang, S Liu. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nature Communications, 2018, 9(1): 4544
https://doi.org/10.1038/s41467-018-06915-6
pmid: 30382108
|
15 |
R E Beal, D J Slotcavage, T Leijtens, A R Bowring, R A Belisle, W H Nguyen, G F Burkhard, E T Hoke, M D McGehee. Cesium lead halide perovskites with improved stability for tandem solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 746–751
https://doi.org/10.1021/acs.jpclett.6b00002
pmid: 26863290
|
16 |
Y Wang, T Zhang, M Kan, Y Zhao. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. Journal of the American Chemical Society, 2018, 140(39): 12345–12348
https://doi.org/10.1021/jacs.8b07927
pmid: 30247030
|
17 |
F Yang, D Hirotani, G Kapil, M A Kamarudin, C H Ng, Y Zhang, Q Shen, S Hayase. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angewandte Chemie International Edition, 2018, 130(39): 12927–12931
https://doi.org/10.1002/ange.201807270
|
18 |
S Sanchez, N Christoph, B Grobety, N Phung, U Steiner, M Saliba, A Abate. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Advanced Energy Materials, 2018, 8(30): 1802060
https://doi.org/10.1002/aenm.201802060
|
19 |
Q Zeng, X Zhang, X Feng, S Lu, Z Chen, X Yong, S A T Redfern, H Wei, H Wang, H Shen, W Zhang, W Zheng, H Zhang, J S Tse, B Yang. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
https://doi.org/10.1002/adma.201705393
pmid: 29333763
|
20 |
H Bian, D Bai, Z Jin, K Wang, L Liang, H Wang, J Zhang, Q Wang, S F Liu. Graded bandgap CsPbI2+xBr1-x, perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2(8): 1500–1510
https://doi.org/10.1016/j.joule.2018.04.012
|
21 |
A Swarnkar, A R Marshall, E M Sanehira, B D Chernomordik, D T Moore, J A Christians, T Chakrabarti, J M Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
https://doi.org/10.1126/science.aag2700
pmid: 27846497
|
22 |
J Liu, Y Wu, C Qin, X Yang, T Yasuda, A Islam, K Zhang, W Peng, W Chen, L Han. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science, 2014, 7(9): 2963–2967
https://doi.org/10.1039/C4EE01589D
|
23 |
M Franckevičius, A Mishra, F Kreuzer, J Luo, S M Zakeeruddin, M Gratzel. A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells. Materials Horizons, 2015, 2(6): 613–618
https://doi.org/10.1039/C5MH00154D
|
24 |
Y Liu, Q Chen, H S Duan, H Zhou, Y Yang, H Chen, S Luo, T B Song, L Dou, Z Hong, Y Yang. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11940–11947
https://doi.org/10.1039/C5TA02502H
|
25 |
E H Jung, N J Jeon, E Y Park, C S Moon, T J Shin, T Y Yang, J H Noh, J Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515
https://doi.org/10.1038/s41586-019-1036-3
pmid: 30918371
|
26 |
Q Ye, Y Zhao, S Mu, F Ma, F Gao, Z Chu, Z Yin, P Gao, X Zhang, J You. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced Materials, 2019, 31(49): e1905143
https://doi.org/10.1002/adma.201905143
pmid: 31631443
|
27 |
Y Shao, Z Xiao, C Bi, Y Yuan, J Huang. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5(1): 5784
https://doi.org/10.1038/ncomms6784
pmid: 25503258
|
28 |
Q Zeng, X Zhang, X Feng, S Lu, Z Chen, X Yong, S A T Redfern, H Wei, H Wang, H Shen, W Zhang, W Zheng, H Zhang, J S Tse, B Yang. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
https://doi.org/10.1002/adma.201705393
pmid: 29333763
|
29 |
Q Jiang, Y Zhao, X Zhang, X Yang, Y Chen, Z Chu, Q Ye, X Li, Z Yin, J You. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13(7): 460–466
https://doi.org/10.1038/s41566-019-0398-2
|
30 |
T Leijtens, I K Ding, T Giovenzana, J T Bloking, M D McGehee, A Sellinger. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano, 2012, 6(2): 1455–1462
https://doi.org/10.1021/nn204296b
pmid: 22230653
|
31 |
A Abate, T Leijtens, S Pathak, J Teuscher, R Avolio, M E Errico, J Kirkpatrik, J M Ball, P Docampo, I McPherson, H J Snaith. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15(7): 2572–2579
https://doi.org/10.1039/c2cp44397j
pmid: 23310946
|
32 |
N H Tiep, Z L Ku, H J Fan. Recent advances in improving the stability of perovskite solar cells. Advanced Energy Materials, 2016, 6(3): 1501420
https://doi.org/10.1002/aenm.201501420
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|