Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 282-290    https://doi.org/10.1007/s12200-020-1046-7
RESEARCH ARTICLE
Composition engineering to obtain efficient hybrid perovskite light-emitting diodes
Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI()
Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
 Download: PDF(1380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal halide perovskites have received considerable attention in the field of electroluminescence, and the external quantum efficiency of perovskite light-emitting diodes has exceeded 20%. CH3NH3PbBr3 has been intensely investigated as an emitting layer in perovskite light-emitting diodes. However, perovskite films comprising CH3NH3PbBr3 often exhibit low surface coverage and poor crystallinity, leading to high current leakage, severe nonradiative recombination, and limited device performance. Herein, we demonstrate a rationale for composition engineering to obtain high-quality perovskite films. We first reduce pinholes by adding excess CH3NH3Br to the actual CH3NH3PbBr3 films, and we then add CsBr to improve the crystalline quality and to passivate nonradiative defects. As a result, the (CH3NH3)1−xCsxPbBr3 based perovskite light-emitting diodes exhibit significantly improved external quantum and power efficiencies of 6.97% and 25.18 lm/W, respectively, representing an improvement in performance dozens of times greater than that of pristine CH3NH3PbBr3-based perovskite light-emitting diodes. Our study demonstrates that composition engineering is an effective strategy for enhancing the device performance of perovskite light-emitting diodes.

Keywords perovskite      light-emitting diode (LED)      composition engineering      ion doping     
Corresponding Author(s): Zhanhua WEI   
Just Accepted Date: 14 July 2020   Online First Date: 06 August 2020    Issue Date: 27 September 2020
 Cite this article:   
Chuanzhong YAN,Kebin LIN,Jianxun LU, et al. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1046-7
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/282
Fig.1  MABr additive enhances the perovskite film quality and the corresponding device performance. (a) Distribution of CE of the Pero-LEDs. (b) PL spectra of the perovskite films with inset of an image of perovskite films (1: MAPbBr3, 2: MAPbBr3-excess) under UV illumination (365 nm). SEM images of (c) MAPbBr3 and (d) MAPbBr3-excess perovskite films (pinholes are indicated by red circles). (e) XRD patterns of the perovskite films. (f) Current densityluminancevoltage (L–J–V) curves of the best-performing Pero-LEDs
Fig.2  CsBr doping improves the film quality. (a) Schematic of crystal structure of the MAPbBr3 doped with CsBr. (b) PL spectra of the perovskite films, inset is an image of perovskite films (1: MAPbBr3-excess, 2: MAPbBr3-excess:CsBr= 1:0.4, 3: MAPbBr3-excess:CsBr= 1:0.8, 4: MAPbBr3-excess:CsBr= 1:1.2) under UV illumination (365 nm). (c) (αhn)2-photon energy (eV) curve of the perovskite films. (d) XRD patterns of the perovskite films. (e) Partially magnified XRD patterns showing (100) and (200) peaks
Fig.3  SEM images of perovskite films. (a) MAPbBr3-excess. (b) MAPbBr3-excess:CsBr= 1:0.4. (c) MAPbBr3-excess:CsBr= 1:0.8. (d) MAPbBr3-excess:CsBr= 1:1.2 (Apparent cracks in images are caused by the electron-beam irradiation during SEM)
Fig.4  Fabrication and performance evaluation of Pero-LEDs devices. (a) Schematic diagram of the Pero-LEDs devices. (b) Energy-level diagram of the Pero-LEDs devices. (c) J–V curves. (d) L–V curves. (e) Distribution of the CE of the Pero-LEDs fabricated with different perovskites. (f) Electroluminescence spectra at different driving voltages of the Pero-LEDs based on MAPbBr3-excess:CsBr = 1:0.8
molar ratio of MAPbBr3-excess:CsBr Lmax/(cd·m−2) CEmax/(cd·A−1) EQEmax/% Von/V PEmax/(lm·W−1)
1:0 4452 2.46 0.63 ~2.8 2.12
1:0.4 13,450 8.23 2.21 ~2.6 6.06
1:0.8 15,059 25.80 6.97 ~2.4 25.18
1:1.2 13,720 17.99 4.84 ~2.4 14.13
Tab.1  EL parameters of the Pero-LEDs with different molar ratios of MAPbBr3-excess:CsBr
1 Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149 pmid: 25086602
2 J Song, J Li, X Li, L Xu, Y Dong, H Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167
https://doi.org/10.1002/adma.201502567 pmid: 26444873
3 M Yuan, L N Quan, R Comin, G Walters, R Sabatini, O Voznyy, S Hoogland, Y Zhao, E M Beauregard, P Kanjanaboos, Z Lu, D H Kim, E H Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
https://doi.org/10.1038/nnano.2016.110 pmid: 27347835
4 H Cho, S H Jeong, M H Park, Y H Kim, C Wolf, C L Lee, J H Heo, A Sadhanala, N Myoung, S Yoo, S H Im, R H Friend, T W Lee. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
https://doi.org/10.1126/science.aad1818 pmid: 26785482
5 Z Wei, A Perumal, R Su, S Sushant, J Xing, Q Zhang, S T Tan, H V Demir, Q Xiong. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8(42): 18021–18026
https://doi.org/10.1039/C6NR05330K pmid: 27722383
6 Z Wei, J Xing. The rise of perovskite light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 3035–3042
https://doi.org/10.1021/acs.jpclett.9b00277 pmid: 31117692
7 J Wang, N Wang, Y Jin, J Si, Z K Tan, H Du, L Cheng, X Dai, S Bai, H He, Z Ye, M L Lai, R H Friend, W Huang. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316
https://doi.org/10.1002/adma.201405217 pmid: 25708283
8 G Li, F W R Rivarola, N J L K Davis, S Bai, T C Jellicoe, F de la Peña, S Hou, C Ducati, F Gao, R H Friend, N C Greenham, Z K Tan. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534
https://doi.org/10.1002/adma.201600064 pmid: 26990965
9 N Wang, L Cheng, R Ge, S Zhang, Y Miao, W Zou, C Yi, Y Sun, Y Cao, R Yang, Y Wei, Q Guo, Y Ke, M Yu, Y Jin, Y Liu, Q Ding, D Di, L Yang, G Xing, H Tian, C Jin, F Gao, R H Friend, J Wang, W Huang. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
https://doi.org/10.1038/nphoton.2016.185
10 Z Xiao, R A Kerner, L Zhao, N L Tran, K M Lee, T W Koh, G D Scholes, B P Rand. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11(2): 108–115
https://doi.org/10.1038/nphoton.2016.269
11 L Zhang, X Yang, Q Jiang, P Wang, Z Yin, X Zhang, H Tan, Y M Yang, M Wei, B R Sutherland, E H Sargent, J You. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8(1): 15640
https://doi.org/10.1038/ncomms15640 pmid: 28589960
12 Y Wu, C Wei, X Li, Y Li, S Qiu, W Shen, B Cai, Z Sun, D Yang, Z Deng, H Zeng. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Letters, 2018, 3(9): 2030–2037
https://doi.org/10.1021/acsenergylett.8b01025
13 J Xing, Y Zhao, M Askerka, L N Quan, X Gong, W Zhao, J Zhao, H Tan, G Long, L Gao, Z Yang, O Voznyy, J Tang, Z H Lu, Q Xiong, E H Sargent. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9(1): 3541
https://doi.org/10.1038/s41467-018-05909-8 pmid: 30166537
14 J Lu, W Feng, G Mei, J Sun, C Yan, D Zhang, K Lin, D Wu, K Wang, Z Wei. Ultrathin PEDOT:PSS enables colorful and efficient perovskite light-emitting diodes. Advanced Science, 2020, 7(11): 2000689
https://doi.org/10.1002/advs.202000689 pmid: 32537421
15 K Lin, J Xing, L N Quan, F P G de Arquer, X Gong, J Lu, L Xie, W Zhao, D Zhang, C Yan, W Li, X Liu, Y Lu, J Kirman, E H Sargent, Q Xiong, Z Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
https://doi.org/10.1038/s41586-018-0575-3 pmid: 30305741
16 T Chiba, Y Hayashi, H Ebe, K Hoshi, J Sato, S Sato, Y J Pu, S Ohisa, J Kido. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681–687
https://doi.org/10.1038/s41566-018-0260-y
17 X Zhao, Z K Tan. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14(4): 215–218
https://doi.org/10.1038/s41566-019-0559-3
18 Y Cao, N Wang, H Tian, J Guo, Y Wei, H Chen, Y Miao, W Zou, K Pan, Y He, H Cao, Y Ke, M Xu, Y Wang, M Yang, K Du, Z Fu, D Kong, D Dai, Y Jin, G Li, H Li, Q Peng, J Wang, W Huang. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
https://doi.org/10.1038/s41586-018-0576-2 pmid: 30305742
19 W Xu, Q Hu, S Bai, C Bao, Y Miao, Z Yuan, T Borzda, A J Barker, E Tyukalova, Z Hu, M Kawecki, H Wang, Z Yan, X Liu, X Shi, K Uvdal, M Fahlman, W Zhang, M Duchamp, J M Liu, A Petrozza, J Wang, L M Liu, W Huang, F Gao. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
https://doi.org/10.1038/s41566-019-0390-x
20 P Meredith, A Armin. LED technology breaks performance barrier. Nature, 2018, 562(7726): 197–198
https://doi.org/10.1038/d41586-018-06923-y pmid: 30305755
21 R F Service. Perovskite LEDs begin to shine. Science, 2019, 364(6444): 918
https://doi.org/10.1126/science.364.6444.918 pmid: 31171673
22 L N Quan, F P García de Arquer, R P Sabatini, E H Sargent. Perovskites for light emission. Advanced Materials, 2018, 30(45): 1801996
https://doi.org/10.1002/adma.201801996 pmid: 30160805
23 L Xie, P Song, L Shen, J Lu, K Liu, K Lin, W Feng, C Tian, Z Wei. Revealing the compositional effect on the intrinsic long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8(16): 7653–7658
https://doi.org/10.1039/D0TA01668C
24 A Kanwat, W C Choi, S Seth, J Jang. Doping and photon induced defect healing of hybrid perovskite thin films: an approach towards efficient light emitting diodes. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2019, 5(5): 666–673
https://doi.org/10.1002/cnma.201900010
25 Z Xu, Z Liu, N Li, G Tang, G Zheng, C Zhu, Y Chen, L Wang, Y Huang, L Li, N Zhou, J Hong, Q Chen, H Zhou. A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Advanced Materials, 2019, 31(24): 1900390
https://doi.org/10.1002/adma.201900390 pmid: 31012204
26 J Si, Y Liu, N Wang, M Xu, J Li, H He, J Wang, Y Jin. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10(4): 1329–1335
https://doi.org/10.1007/s12274-017-1432-7
27 X Yang, Z Chu, J Meng, Z Yin, X Zhang, J Deng, J You. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite based light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 2892–2897
https://doi.org/10.1021/acs.jpclett.9b00910 pmid: 31090418
28 V Prakasam, F Di Giacomo, R Abbel, D Tordera, M Sessolo, G Gelinck, H J Bolink. Efficient perovskite light-emitting diodes: Effect of composition, morphology, and transport layers. ACS Applied Materials & Interfaces, 2018, 10(48): 41586–41591
https://doi.org/10.1021/acsami.8b15718 pmid: 30387594
29 R Naphade, B Zhao, J M Richter, E Booker, S Krishnamurthy, R H Friend, A Sadhanala, S Ogale. High quality hybrid perovskite semiconductor thin films with remarkably enhanced luminescence and defect suppression via quaternary alkyl ammonium salt based treatment. Advanced Materials Interfaces, 2017, 4(19): 1700562
https://doi.org/10.1002/admi.201700562
30 R Prasanna, A Gold-Parker, T Leijtens, B Conings, A Babayigit, H G Boyen, M F Toney, M D McGehee. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. Journal of the American Chemical Society, 2017, 139(32): 11117–11124
https://doi.org/10.1021/jacs.7b04981 pmid: 28704048
31 L Xie, K Lin, J Lu, W Feng, P Song, C Yan, K Liu, L Shen, C Tian, Z Wei. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. Journal of the American Chemical Society, 2019, 141(51): 20537–20546
https://doi.org/10.1021/jacs.9b11546 pmid: 31775500
32 H Min, M Kim, S U Lee, H Kim, G Kim, K Choi, J H Lee, S I Seok. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
https://doi.org/10.1126/science.aay7044 pmid: 31699938
[1] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[2] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[3] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[4] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[5] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[6] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[7] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[8] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[9] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[10] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[13] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[14] Zhiqian WU,Yue SHEN,Xiaoqiang LI,Qing YANG,Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Front. Optoelectron., 2016, 9(1): 87-92.
[15] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed