Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 246-255    https://doi.org/10.1007/s12200-020-1050-y
REVIEW ARTICLE
Possible top cells for next-generation Si-based tandem solar cells
Shuaicheng LU, Chao CHEN(), Jiang TANG
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
 Download: PDF(694 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S)2 (CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as Sb2S3, Se, CdSe, and Cu2O. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.

Keywords photovoltaic market      Si-based solar cell      efficiency limit      tandem      top cell     
Corresponding Author(s): Chao CHEN   
Just Accepted Date: 30 June 2020   Online First Date: 20 July 2020    Issue Date: 27 September 2020
 Cite this article:   
Shuaicheng LU,Chao CHEN,Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1050-y
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/246
Fig.1  (a) Evolution of global cumulative installed capacity and percentage of global annual production of three major photovoltaic technologies: thin-film, multi-Si, and mono-Si. Adapted from Refs. [1,2]. (b) Photovoltaic module price evolution versus cumulative production. Adapted from Ref. [2]. (c) Record efficiencies of c-Si solar cells and their theoretical efficiency limits [35]. (d) Theoretical efficiency limit of four-terminal tandem solar cells as a function of the bandgaps of top and bottom cells based on the Shockley–Queisser limit
device structure PCE/% VOC/V JSC/(mA·cm2) FF/% area/cm2 test center, date note
GaAs//Si (1.42//1.12 eV) 32.82 1.092//0.683 28.90//11.07 85.0//79.2 1.003 NREL, 12/2016 NREL/CSEM/EPFL, 4T [15]
GaInP//Si (1.81//1.12 eV) 32.45 1.454//0.694 15.78//23.11 87.0//77.9 1.005 NREL, 12/2016 NREL/CSEM/EPFL, 4T [15]
GaAsP/Si (1.72/1.12 eV) 20.1 1.673 14.94 80.3 3.940 NREL, 05/2018 OSU/SolAero/UNSW, 2T [19]
AlGaAs/Si (1.6/1.12 eV) 25.2 1.55 27.9 58 1 not certified, 04/2012 UTokyo, 2T [20]
GaInP/GaAs//Si(1.81/1.42//1.12 eV) 35.91 2.520//0.681 13.61//11.03 87.5//78.5 1.002 NREL, 02/2017 NREL/CSEM/EPFL, 4T [15]
GaInP/AlGaAs/Si(1.90/1.43/1.12 eV) 34.1 3.177 12.4 86.4 3.987 FhG-ISE, 08/2019 FhG-ISE, 2T [7,21]
GaInP/GaAs/Si(1.90/1.43/1.12 eV) 24.3 2.662 12.2 74.5 3.987 FhG-ISE, 06/2019 FhG-ISE, 2T [7,22]
perovskite/Si 28.0 1.802 19.75 78.7 1.03 NREL, 12/18 Oxford PV, 2T [7]
perovskite/Si(1.67/1.12 eV, CsFAMAPbIBrCl) 27.13
(26.08)
1.886
(1.87)
19.12
(18.4)
75.3
(74.9)
1
(0.999)
not certified, 2019
(NREL, 08/2019)
CU/NREL/USTC, 2T [16]
perovskite/Si(1.68/1.12 eV, CsMAFAPbIBr) 25.71 1.781 19.07 75.36 0.832 FhG-ISE, 03/2020 UofT/KAUST/NREL/SDSU, 2T [23]
perovskite/Si(1.63/1.12 eV, CsFAMAPbIBr) 25.43 1.792 19.02 74.6 1.088 FhG-ISE, 02/2019 HZB/Oxf/Oxford PV, 2T [24]
perovskite/Si(1.6/1.12 eV, CsFAPbIBr) 25.24 1.788 19.53 73.1 1.419 FhG-ISE, 06/2018 EPFL/CSEM, 2T [25]
perovskite//Si(1.72//1.12 eV, CsFAPbIBr) 27.1 1.22//0.678 15.4//24.1 70.1//81.2 0.13 not certified, 12/2018 IMEC/KU Leuven/UG/TU/e, 4T [26]
CdZnTe/Si (1.78/1.12 eV) 16.8 1.75 16 60 NA not certified, 01/2010 EPIR, 2T [27,28]
CuGaSe2/Si(1.7/1.12 eV) 5.1 1.32 9.0 43 NA NREL, 03/2003 NREL, 2T [29]
CuGaSe2/Si(1.7/1.12 eV) 9.7 1.328 12.3 59.4 0.5 not certified, 11/2017 KIST/UST [30]
a-Si//Si(1.7//1.12 eV) 16.8 0.867//0.545 13.4//23.2 61.0//76.6 0.033 not certified, 05/1990 Osaka University, 4T [31]
a-Si/Si(1.7/1.12 eV) 15.04 1.478 16.17 63.0 0.065 not certified, 05/1990 Osaka University, 2T [31]
Tab.1  Summary of notable results on Si-based tandem solar cells. All these solar cells were characterized under a AM 1.5G spectrum (1000 W/m2). The double slash (//) means that subcells are mechanically stacked, whereas a single slash (/) denotes that subcells are integrated by monolithic growth. 4T and 2T?are abbreviations for four-terminal and two-terminal tandem structures, respectively. NA means that the data are not available
Fig.2  Schematic of the screening process for potential candidates for the development of Si-based tandem solar cells
material Eg/eV PCE/% VOC/V JSC/(mA·cm2) FF/% description
Sb2S3 1.7 7.5 0.711 16.1 65.0 chemical bath deposition [53]
Se 1.95 6.51 0.969 10.6 63.4 thermal evaporation [54]
CdSe 1.72 ~6 0.65 18 50 vacuum evaporation [55]
Cu2O 2.1 8.1 1.2 10.4 65 Cu sheet oxidization [5658]
Tab.2  List of potential candidates for use in Si-based tandem solar cells
1 BP p.l.c. BP Statistical Review of World Energy. UK. 2019, 51
2 Fraunhofer Institute for Solar Energy Systems. Photovolatics Report. Germany. 2019, 21–45
3 A Richter, M Hermle, S W Glunz. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191
https://doi.org/10.1109/JPHOTOV.2013.2270351
4 NREL. Best Research-Cell Efficiencies. 2020
5 A Polman, M Knight, E C Garnett, B Ehrler, W C Sinke. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424
https://doi.org/10.1126/science.aad4424 pmid: 27081076
6 M O Reese, S Glynn, M D Kempe, D L McGott, M S Dabney, T M Barnes, S Booth, D Feldman, N M Haegel. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy, 2018, 3(11): 1002–1012
https://doi.org/10.1038/s41560-018-0258-1
7 M A Green, E D Dunlop, J Hohl-Ebinger, M Yoshita, N Kopidakis, A W Ho-Baillie. Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3–15
https://doi.org/10.1002/pip.3228
8 Z S Yu, M Leilaeioun, Z Holman. Selecting tandem partners for silicon solar cells. Nature Energy, 2016, 1(11): 16137
https://doi.org/10.1038/nenergy.2016.137
9 T Leijtens, K A Bush, R Prasanna, M D McGehee. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3(10): 828–838
https://doi.org/10.1038/s41560-018-0190-4
10 S Bremner, M Levy, C B Honsberg. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 225–233
https://doi.org/10.1002/pip.799
11 M Yamaguchi, K H Lee, K Araki, N Kojima. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics, 2018, 51(13): 133002
https://doi.org/10.1088/1361-6463/aaaf08
12 T P White, N N Lal, K R Catchpole. Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for>30% efficiency. IEEE Journal of Photovoltaics, 2014, 4(1): 208–214
https://doi.org/10.1109/JPHOTOV.2013.2283342
13 B M Kayes, H Nie, R Twist, S G Spruytte, F Reinhardt, I C Kizilyalli, G S Higashi. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference. Seattle: IEEE, 2011, 000004–000008
14 J F Geisz, M A Steiner, N Jain, K L Schulte, R M France, W E McMahon, E E Perl, D J Friedman. Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics, 2018, 8(2): 626–632
https://doi.org/10.1109/JPHOTOV.2017.2778567
15 S Essig, C Allebé, T Remo, J F Geisz, M A Steiner, K Horowitz, L Barraud, J S Ward, M Schnabel, A Descoeudres, D L Young, M Woodhouse, M Despeisse, C Ballif, A Tamboli. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2017, 2(9): 17144
https://doi.org/10.1038/nenergy.2017.144
16 J Xu, C C Boyd, Z J Yu, A F Palmstrom, D J Witter, B W Larson, R M France, J Werner, S P Harvey, E J Wolf, W Weigand, S Manzoor, M F A M van Hest, J J Berry, J M Luther, Z C Holman, M D McGehee. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367(6482): 1097–1104
https://doi.org/10.1126/science.aaz5074 pmid: 32139537
17 E H Jung, N J Jeon, E Y Park, C S Moon, T J Shin, T Y Yang, J H Noh, J Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515
https://doi.org/10.1038/s41586-019-1036-3 pmid: 30918371
18 N N Lal, Y Dkhissi, W Li, Q Hou, Y B Cheng, U Bach. Perovskite tandem solar cells. Advanced Energy Materials, 2017, 7(18): 1602761
https://doi.org/10.1002/aenm.201602761
19 T J Grassman, D J Chmielewski, S D Carnevale, J A Carlin, S A Ringel. GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE Journal of Photovoltaics, 2016, 6(1): 326–331
https://doi.org/10.1109/JPHOTOV.2015.2493365
20 K Tanabe, K Watanabe, Y Arakawa. III-V/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2(1): 349
https://doi.org/10.1038/srep00349 pmid: 22470842
21 R Cariou, J Benick, F Feldmann, O Höhn, H Hauser, P Beutel, N Razek, M Wimplinger, B Bläsi, D Lackner, M Hermle, G Siefer, S W Glunz, A W Bett, F Dimroth. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018, 3(4): 326–333
https://doi.org/10.1038/s41560-018-0125-0
22 M Feifel, D Lackner, J Ohlmann, J Benick, M Hermle, F Dimroth. Direct growth of a GaInP/GaAs/Si triple-junction solar cell with 22.3% AM1.5G efficiency. Solar RRL, 2019, 3(12): 1900313
https://doi.org/10.1002/solr.201900313
23 Y Hou, E Aydin, M De Bastiani, C Xiao, F H Isikgor, D J Xue, B Chen, H Chen, B Bahrami, A H Chowdhury, A Johnston, S W Baek, Z Huang, M Wei, Y Dong, J Troughton, R Jalmood, A J Mirabelli, T G Allen, E Van Kerschaver, M I Saidaminov, D Baran, Q Qiao, K Zhu, S De Wolf, E H Sargent. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482): 1135–1140
https://doi.org/10.1126/science.aaz3691 pmid: 32139544
24 L Mazzarella, Y H Lin, S Kirner, A B Morales-Vilches, L Korte, S Albrecht, E Crossland, B Stannowski, C Case, H J Snaith, R Schlatmann. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241
https://doi.org/10.1002/aenm.201803241
25 F Sahli, J Werner, B A Kamino, M Bräuninger, R Monnard, B Paviet-Salomon, L Barraud, L Ding, J J Diaz Leon, D Sacchetto, G Cattaneo, M Despeisse, M Boccard, S Nicolay, Q Jeangros, B Niesen, C Ballif. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17(9): 820–826
https://doi.org/10.1038/s41563-018-0115-4 pmid: 29891887
26 M Jaysankar, B A Raul, J Bastos, C Burgess, C Weijtens, M Creatore, T Aernouts, Y Kuang, R Gehlhaar, A Hadipour, J Poortmans. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 2019, 4(1): 259–264
https://doi.org/10.1021/acsenergylett.8b02179
27 M Carmody, S Mallick, J Margetis, R Kodama, T Biegala, D Xu, P Bechmann, J Garland, S Sivananthan. Single-crystal II–VI on Si single-junction and tandem solar cells. Applied Physics Letters, 2010, 96(15): 153502
https://doi.org/10.1063/1.3386529
28 S Sivananthan, J W Garland, M W Carmody. Multijunction single-crystal CdTe-based solar cells: opportunities and challenges. In: Proceedings of Energy Harvesting and Storage: Materials, Devices, and Applications. Orlando: SPIE, 2010, 76830N
29 R Noufi, D L Young, T J Coutts, T Gessert, J S Ward, A Duda, X Wu, M Romero, R Dhere, J A Shama. Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka: IEEE, 2003, 12–14
30 A R Jeong, S B Choi, W M Kim, J K Park, J Choi, I Kim, J H Jeong. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Scientific Reports, 2017, 7(1): 15723
https://doi.org/10.1038/s41598-017-15998-y pmid: 29146956
31 Y Matsumoto, K Miyagi, H Takakura, H Okamoto, Y Hamakawa. a-Si/poly-Si two-and four-terminal tandem type solar cells. In: Proceedings of IEEE Conference on Photovoltaic Specialists. Kissimmee: IEEE, 1990, 1420–1425
32 H Shen, D Walter, Y Wu, K C Fong, D A Jacobs, T Duong, J Peng, K Weber, T P White, K R Catchpole. Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Advanced Energy Materials, 2020, 10(13): 1902840
https://doi.org/10.1002/aenm.201902840
33 T Todorov, O Gunawan, S Guha. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 2016, 1(4): 370–376
https://doi.org/10.1039/C6ME00041J
34 R Scheer, H W Schock. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Weinheim: John Wiley & Sons. 2011, 178
35 A Bosio, G Rosa, N Romeo. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy, 2018, 175: 31–43
https://doi.org/10.1016/j.solener.2018.01.018
36 T K Todorov, D M Bishop, Y S Lee. Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180: 350–357
https://doi.org/10.1016/j.solmat.2017.07.033
37 J J Becker, C M Campbell, C Tsai, Y Zhao, M Lassise, X Zhao, M Boccard, Z C Holman, Y Zhang. Monocrystalline 1.7-eV-bandgap MgCdTe solar cell with 11.2% efficiency. IEEE Journal of Photovoltaics, 2018, 8(2): 581–586
https://doi.org/10.1109/JPHOTOV.2017.2769105
38 D E Swanson, C Reich, A Abbas, T Shimpi, H Liu, F A Ponce, J M Walls, Y H Zhang, W K Metzger, W S Sampath, Z C Holman. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 2018, 123(20): 203101
https://doi.org/10.1063/1.5023811
39 M Nakamura, K Yamaguchi, Y Kimoto, Y Yasaki, T Kato, H Sugimoto. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019, 9(6): 1863–1867
https://doi.org/10.1109/JPHOTOV.2019.2937218
40 D C Jordan, S R Kurtz. Photovoltaic degradation rates-an analytical review. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 12–29
https://doi.org/10.1002/pip.1182
41 J Yi. New generation multijunction solar cells for achieving high efficiencies. Current Photovoltaic Research, 2018, 6(2): 31–38
42 S Ishizuka, A Yamada, P J Fons, H Shibata, S Niki. Impact of a binary Ga2Se3 precursor on ternary CuGaSe2 thin-film and solar cell device properties. Applied Physics Letters, 2013, 103(14): 143903
https://doi.org/10.1063/1.4823585
43 H Hiroi, Y Iwata, S Adachi, H Sugimoto, A Yamada. New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE Journal of Photovoltaics, 2016, 6(3): 760–763
https://doi.org/10.1109/JPHOTOV.2016.2537540
44 R Kondrotas, C Chen, J Tang. Sb2S3 solar cells. Joule, 2018, 2(5): 857–878
https://doi.org/10.1016/j.joule.2018.04.003
45 H Sai, T Matsui, H Kumagai, K Matsubara. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11(2): 022301
https://doi.org/10.7567/APEX.11.022301
46 W T Navaraj, B K Yadav, A Kumar. Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell. Journal of Computational Electronics, 2016, 15(1): 287–294
https://doi.org/10.1007/s10825-015-0767-0
47 T Matsui, K Maejima, A Bidiville, H Sai, T Koida, T Suezaki, M Matsumoto, K Saito, I Yoshida, M Kondo. High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KB10
48 T Tiedje. Band tail recombination limit to the output voltage of amorphous silicon solar cells. Applied Physics Letters, 1982, 40(7): 627–629
https://doi.org/10.1063/1.93168
49 S Rühle. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139–147
https://doi.org/10.1016/j.solener.2016.02.015
50 W Shockley, H Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
https://doi.org/10.1063/1.1736034
51 S Castro-Hermosa, S K Yadav, L Vesce, A Guidobaldi, A Reale, A Di Carlo, T M Brown. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal of Physics D, Applied Physics, 2017, 50(3): 033001
https://doi.org/10.1088/1361-6463/50/3/033001
52 C Owens, G M Ferguson, M Hermenau, E Voroshazi, Y Galagan, B Zimmermann, R Rösch, D Angmo, G Teran-Escobar, C Uhrich, R Andriessen, H Hoppe, U Würfel, M Lira-Cantu, F C Krebs, D M Tanenbaum. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration. Polymers, 2015, 8(1): 1
https://doi.org/10.3390/polym8010001 pmid: 30979099
53 Y C Choi, D U Lee, J H Noh, E K Kim, S I Seok. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Advanced Functional Materials, 2014, 24(23): 3587–3592
https://doi.org/10.1002/adfm.201304238
54 T K Todorov, S Singh, D M Bishop, O Gunawan, Y S Lee, T S Gershon, K W Brew, P D Antunez, R Haight. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nature Communications, 2017, 8(1): 682
https://doi.org/10.1038/s41467-017-00582-9 pmid: 28947765
55 E Rickus. Photovoltaic behaviour of CdSe thin film solar cells. In: Proceedings of the 4th EC Photovoltaic Solar Energy Conference. Dordrecht: Springer, 1982, 831–835
56 T Minami, Y Nishi, T Miyata. Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Applied Physics Express, 2016, 9(5): 052301
https://doi.org/10.7567/APEX.9.052301
57 L H Wong, A Zakutayev, J D Major, X Hao, A Walsh, T K Todorov, E Saucedo. Emerging inorganic solar cell efficiency tables (Version 1). Journal of Physics: Energy, 2019, 1(3): 032001
https://doi.org/10.1088/2515-7655/ab2338
58 T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Applied Physics Express, 2013, 6(4): 044101
https://doi.org/10.7567/APEX.6.044101
59 H Lei, J Chen, Z Tan, G Fang. Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL, 2019, 3(6): 1900026
https://doi.org/10.1002/solr.201900026
60 A Mavlonov, T Razykov, F Raziq, J Gan, J Chantana, Y Kawano, T Nishimura, H Wei, A Zakutayev, T Minemoto, X Zu, S Li, L Qiao. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020, 201: 227–246
https://doi.org/10.1016/j.solener.2020.03.009
61 J Han, S Wang, J Yang, S Guo, Q Cao, H Tang, X Pu, B Gao, X Li. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Applied Materials & Interfaces, 2020, 12(4): 4970–4979
https://doi.org/10.1021/acsami.9b15148 pmid: 31698902
62 C H Jiang, R F Tang, X M Wang, H X Ju, G L Chen, T Chen. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL, 2019, 3(1): 1800272
https://doi.org/10.1002/solr.201800272
63 L Wang, D B Li, K Li, C Chen, H X Deng, L Gao, Y Zhao, F Jiang, L Li, F Huang, Y He, H Song, G Niu, J Tang. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2(4): 17046
https://doi.org/10.1038/nenergy.2017.46
64 Y Zhou, L Wang, S Chen, S Qin, X Liu, J Chen, D J Xue, M Luo, Y Cao, Y Cheng, E H Sargent, J Tang. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
https://doi.org/10.1038/nphoton.2015.78
65 H Deng, Y Zeng, M Ishaq, S Yuan, H Zhang, X Yang, M Hou, U Farooq, J Huang, K Sun, R Webster, H Wu, Z Chen, F Yi, H Song, X Hao, J Tang. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720
https://doi.org/10.1002/adfm.201901720
66 Y Cao, X Zhu, J Jiang, C Liu, J Zhou, J Ni, J Zhang, J Pang. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Solar Energy Materials and Solar Cells, 2020, 206: 110279
https://doi.org/10.1016/j.solmat.2019.110279
67 J Zhang, W Lian, Y Yin, X Wang, R Tang, C Qian, X Hao, C Zhu, T. Chen All antimony chalcogenide tandem solar cell. Solar RRL, 2020, 4(4): 2000048
68 M Zhu, G Niu, J Tang. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199–2206
https://doi.org/10.1039/C8TC05873C
69 I Hadar, X Hu, Z Z Luo, V P Dravid, M G Kanatzidis. Nonlinear band gap tunability in selenium tellurium alloys and its utilization in solar cells. ACS Energy Letters, 2019, 4(9): 2137–2143
https://doi.org/10.1021/acsenergylett.9b01619
70 B Bagheri, R Kottokkaran, L P Poly, S Sharikadze, B Reichert, M Noack, V Dalal. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation. In: Proceedings of the 46th IEEE Photovoltaic Specialists Conference (PVSC). Chicago: IEEE, 2019, 1822–1825
71 P Mahawela, S Jeedigunta, S Vakkalanka, C S Ferekides, D L Morel. Transparent high-performance CDSE thin-film solar cells. Thin Solid Films, 2005, 480–481: 466–470
https://doi.org/10.1016/j.tsf.2004.11.066
72 N G Patel, C J Panchal, K K Makhija, P G Patel, S S Patel. Fabrication and characterization of ZnTe/CdSe thin film solar cells. Crystal Research and Technology, 1994, 29(2): 247–252
https://doi.org/10.1002/crat.2170290214
73 A Y Shenouda, E S M El Sayed. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Engineering Journal, 2015, 6(1): 341–346
https://doi.org/10.1016/j.asej.2014.07.010
74 C B Murray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
https://doi.org/10.1021/ja00072a025
75 K W Frese Jr. A high-efficiency single-crystal cdse photo-electrochemical solar-cell and an associated loss mechanism. Applied Physics Letters, 1982, 40(3): 275–277
https://doi.org/10.1063/1.93036
76 S Giraldo, Z Jehl, M Placidi, V Izquierdo-Roca, A Pérez-Rodríguez, E Saucedo. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Advanced Materials, 2019, 31(16): 1806692
https://doi.org/10.1002/adma.201806692 pmid: 30767308
77 Y S Lee, D Chua, R E Brandt, S C Siah, J V Li, J P Mailoa, S W Lee, R G Gordon, T Buonassisi. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Advanced Materials, 2014, 26(27): 4704–4710
https://doi.org/10.1002/adma.201401054 pmid: 24862543
78 S Eisermann, A Kronenberger, A Laufer, J Bieber, G Haas, S Lautenschläger, G Homm, P J Klar, B K Meyer. Copper oxide thin films by chemical vapor deposition: Synthesis, characterization and electrical properties. Physica Status Solidi (a), 2012, 209(3): 531–536
79 Y S Lee, J Heo, S C Siah, J P Mailoa, R E Brandt, S B Kim, R G Gordon, T Buonassisi. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy & Environmental Science, 2013, 6(7): 2112–2118
https://doi.org/10.1039/c3ee24461j
[1] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed