Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 225-234    https://doi.org/10.1007/s12200-020-1051-x
REVIEW ARTICLE
Self-trapped excitons in two-dimensional perovskites
Junze LI1, Haizhen WANG1(), Dehui LI1,2()
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(2027 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With strong electron–phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron–phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

Keywords self-trapped exciton (STE)      two-dimensional (2D) perovskites      broadband emission      electron–phonon coupling      optoelectronic applications     
Corresponding Author(s): Haizhen WANG,Dehui LI   
Just Accepted Date: 16 July 2020   Online First Date: 27 August 2020    Issue Date: 27 September 2020
 Cite this article:   
Junze LI,Haizhen WANG,Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1051-x
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/225
Fig.1  Luminescence characteristics of 2D perovskites. (a) Crystal structure schematics of 2D perovskites. (b) and (c) Photoluminescence (PL) spectra of (BA)2(MA)n−1PbnI3n+1 2D perovskites at (b) room temperature (c) and low temperature. (d) Power-dependent emission intensity of free exciton (blue) and self-trapped exciton (black and red) in (BA)2PbI4 at low temperature. (e) Fluorescence lifetime spectra of the free exciton (green) and self-trapped excitons (red) in (PEA)2PbI4. (a) Reprinted with permission from Ref. [31]. Copyright (2016), American Chemical Society. (b) Adapted with permission from Ref. [16]. Copyright (2017), The American Association for the Advancement of Science. (c) and (d) Adapted with permission from Ref. [33]. Copyright (2018), Nature Publishing. (e) Adapted with permission from Ref. [35]. Copyright (2019), John Wiley & Sons
Fig.2  Band diagram of free exciton and self-trapped excitons. EX is the free exciton. STE is the self-trapped exciton. EB is the self-trapped energy. Three paths toward self-trapped excitons are represented: (1) direct relaxation, (2) thermal activation, and (3) tunneling
Fig.3  Influence of dimension and temperature on self-trapped excitons in 2D perovskite. (a) Temperature-dependent fluorescence spectra of (MA)PbI3 perovskite. (b) Temperature-dependent fluorescence spectra of (BA)2PbI4 2D perovskite. (c) Absorption (dashed lines) and fluorescence spectra (solid lines) of (BA)2(MA)n−1PbnI3n+1 (n?=?1,?2,?3) perovskite. (d)–(f) Transition absorption spectra of (BA)2(MA)n−1PbnI3n+1 (n?=?1,?2,?3). (a)–(f) Adapted with permission from Ref. [23]. Copyright (2015), American Chemical Society
Fig.4  Effect of lattice distortion on the intensity of self-trapped excitons. (a) Schematic of the chloride-ion-enhanced lattice distortion. (b) Photoluminescence spectra of 2D perovskite with different ratios of chloride ion. (c) Structure diagram of 2D perovskite with the different organic layers. (d) Photoluminescence spectra of 2D perovskite in (c). (e) Photoluminescence spectra of (PEA)2PbI4 before and after incorporation of tin ions. (a) and (b) Adapted with permission from Ref. [41]. Copyright (2017), American Chemical Society. (c) and (d) Adapted with permission from Ref. [27]. Copyright (2017), American Chemical Society. (e) Adapted with permission from Ref. [35]. Copyright (2019), John Wiley & Sons
Fig.5  Characterization of self-trapped excitons. (a) Time-resolved photoluminescence spectra of 2D perovskites at different temperatures. (b) Photocurrent spectra of (BA)2(MA)Pb2I7. (c) Absorption spectra of (BA)2(MA)Pb2I7 at different temperatures. The absorption coefficient is expressed in logarithmic form. Fitting lines indicate the slope of the Urbach tail. (a) Adapted with permission from Ref. [36]. Copyright (2015), American Chemical Society. (b) and (c) Adapted with permission from Ref. [22]. Copyright (2019), Nature Publishing
Fig.6  Optoelectronic application based on self-trapped excitons in 2D perovskites. (a) Fluorescence images of 2D perovskites with chloride ions (left) and bromide ions (right). (b)–(d) Absorption and fluorescence spectra of 2D perovskites with (b) chloride ions, (c) bromide ions, and (d) iodide ions. (e) Chromaticity coordinates diagram of the emission in (b)–(d). (f) Structure diagram of a 2D perovskite narrowband photodetector. (g) Narrowband photodetectors in a visible band based on 2D perovskites. (h) Polarization-dependent photocurrent of STEs. (a)–(e) Adapted with permission from Ref. [25]. Copyright (2014), American Chemical Society. (f) and (g) Adapted with permission from Ref. [22]. Copyright (2019), Nature Publishing. (h) Adapted with permission from Ref. [46]. Copyright (2019), John Wiley & Sons
1 T M Brenner, D A Egger, L Kronik, G Hodes, D Cahen. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1(1): 15007
https://doi.org/10.1038/natrevmats.2015.7
2 W Li, Z Wang, F Deschler, S Gao, R H Friend, A K Cheetham. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nature Reviews Materials, 2017, 2(3): 16099
https://doi.org/10.1038/natrevmats.2016.99
3 National Renewable Energy Laboratory. NREL efficiency chart.
4 Z Wang, Z Shi, T Li, Y Chen, W Huang. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017, 56(5): 1190–1212
https://doi.org/10.1002/anie.201603694 pmid: 27891742
5 L Dou. Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(43): 11165–11173
https://doi.org/10.1039/C7TC02863F
6 L Etgar. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy & Environmental Science, 2018, 11(2): 234–242
https://doi.org/10.1039/C7EE03397D
7 G Grancini, M K Nazeeruddin. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019, 4(1): 4–22
https://doi.org/10.1038/s41578-018-0065-0
8 J Li, J Wang, Y Zhang, H, Wang G Lin, X Xiong, W Zhou, H, Luo D Li. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5(2): 021001
9 C Fang, H Wang, Z Shen, H Shen, S Wang, J Ma, J Wang, H Luo, D Li. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Applied Materials & Interfaces, 2019, 11(8): 8419–8427
https://doi.org/10.1021/acsami.8b20538 pmid: 30702273
10 J Ma, C Fang, C Chen, L Jin, J Wang, S Wang, J Tang, D Li. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 2019, 13(3): 3659–3665
https://doi.org/10.1021/acsnano.9b00302 pmid: 30856318
11 D H Cao, C C Stoumpos, O K Farha, J T Hupp, M G Kanatzidis. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137(24): 7843–7850
https://doi.org/10.1021/jacs.5b03796 pmid: 26020457
12 M D Smith, B A Connor, H I Karunadasa. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
https://doi.org/10.1021/acs.chemrev.8b00477 pmid: 30689364
13 Y Gao, E Shi, S Deng, S B Shiring, J M Snaider, C Liang, B Yuan, R Song, S M Janke, A Liebman-Peláez, P Yoo, M Zeller, B W Boudouris, P Liao, C Zhu, V Blum, Y Yu, B M Savoie, L Huang, L Dou. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nature Chemistry, 2019, 11(12): 1151–1157
https://doi.org/10.1038/s41557-019-0354-2 pmid: 31712613
14 L Dou, A B Wong, Y Yu, M Lai, N Kornienko, S W Eaton, A Fu, C G Bischak, J Ma, T Ding, N S Ginsberg, L W Wang, A P Alivisatos, P Yang. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521
https://doi.org/10.1126/science.aac7660 pmid: 26404831
15 D B Straus, C R Kagan. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters, 2018, 9(6): 1434–1447
https://doi.org/10.1021/acs.jpclett.8b00201 pmid: 29481089
16 J C Blancon, H Tsai, W Nie, C C Stoumpos, L Pedesseau, C Katan, M Kepenekian, C M Soe, K Appavoo, M Y Sfeir, S Tretiak, P M Ajayan, M G Kanatzidis, J Even, J J Crochet, A D Mohite. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288–1292
https://doi.org/10.1126/science.aal4211 pmid: 28280250
17 Y Chen, Y Sun, J Peng, J Tang, K Zheng, Z Liang. 2D Ruddlesden-Popper perovskites for optoelectronics. Advanced Materials, 2018, 30(2): 1703487
https://doi.org/10.1002/adma.201703487 pmid: 29028138
18 J Wang, R Su, J Xing, D Bao, C Diederichs, S Liu, T C H Liew, Z Chen, Q Xiong. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 2018, 12(8): 8382–8389
https://doi.org/10.1021/acsnano.8b03737 pmid: 30089200
19 M Yuan, L N Quan, R Comin, G Walters, R Sabatini, O Voznyy, S Hoogland, Y Zhao, E M Beauregard, P Kanjanaboos, Z Lu, D H Kim, E H Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
https://doi.org/10.1038/nnano.2016.110 pmid: 27347835
20 S T Ha, C Shen, J Zhang, Q Xiong. Laser cooling of organic-inorganic lead halide perovskites. Nature Photonics, 2016, 10(2): 115–121
https://doi.org/10.1038/nphoton.2015.243
21 D B Straus, S Hurtado Parra, N Iotov, J Gebhardt, A M Rappe, J E Subotnik, J M Kikkawa, C R Kagan. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. Journal of the American Chemical Society, 2016, 138(42): 13798–13801
https://doi.org/10.1021/jacs.6b08175 pmid: 27706940
22 J Li, J Wang, J Ma, H Shen, L Li, X Duan, D Li. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nature Communications, 2019, 10(1): 806
https://doi.org/10.1038/s41467-019-08768-z pmid: 30778073
23 X Wu, M T Trinh, D Niesner, H Zhu, Z Norman, J S Owen, O Yaffe, B J Kudisch, X Y Zhu. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096
https://doi.org/10.1021/ja512833n pmid: 25602495
24 D Cortecchia, S Neutzner, A R Srimath Kandada, E Mosconi, D Meggiolaro, F De Angelis, C Soci, A Petrozza. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
https://doi.org/10.1021/jacs.6b10390 pmid: 28024394
25 E R Dohner, A Jaffe, L R Bradshaw, H I Karunadasa. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society, 2014, 136(38): 13154–13157
https://doi.org/10.1021/ja507086b pmid: 25162937
26 L Mao, P Guo, M Kepenekian, I Hadar, C Katan, J Even, R D Schaller, C C Stoumpos, M G Kanatzidis. Structural diversity in white-light-emitting hybrid lead bromide perovskites. Journal of the American Chemical Society, 2018, 140(40): 13078–13088
https://doi.org/10.1021/jacs.8b08691 pmid: 30212624
27 L Mao, Y Wu, C C Stoumpos, M R Wasielewski, M G Kanatzidis. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. Journal of the American Chemical Society, 2017, 139(14): 5210–5215
https://doi.org/10.1021/jacs.7b01312 pmid: 28306254
28 R T Williams, K S Song. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 1990, 51(7): 679–716
https://doi.org/10.1016/0022-3697(90)90144-5
29 M D Smith, H I Karunadasa. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627
https://doi.org/10.1021/acs.accounts.7b00433 pmid: 29461806
30 M D Smith, A Jaffe, E R Dohner, A M Lindenberg, H I Karunadasa. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chemical Science (Cambridge), 2017, 8(6): 4497–4504
https://doi.org/10.1039/C7SC01590A pmid: 28970879
31 C C Stoumpos, D H Cao, D J Clark, J Young, J M Rondinelli, J I Jang, J T Hupp, M G Kanatzidis. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867
https://doi.org/10.1021/acs.chemmater.6b00847
32 S Wang, J Ma, W Li, J Wang, H Wang, H Shen, J Li, J Wang, H Luo, D Li. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction. Journal of Physical Chemistry Letters, 2019, 10(10): 2546–2553
https://doi.org/10.1021/acs.jpclett.9b01011 pmid: 31050442
33 J C Blancon, A V Stier, H Tsai, W Nie, C C Stoumpos, B Traoré, L Pedesseau, M Kepenekian, F Katsutani, G T Noe, J Kono, S Tretiak, S A Crooker, C Katan, M G Kanatzidis, J J Crochet, J Even, A D Mohite. Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018, 9(1): 2254
https://doi.org/10.1038/s41467-018-04659-x pmid: 29884900
34 J Li, J Ma, X Cheng, Z Liu, Y Chen, D Li. Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano, 2020, 14(2): 2156–2161
https://doi.org/10.1021/acsnano.9b08975 pmid: 31968166
35 J Yu, J Kong, W Hao, X Guo, H He, W R Leow, Z Liu, P Cai, G Qian, S Li, X Chen, X Chen. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Advanced Materials, 2019, 31(7): e1806385
pmid: 30556251
36 A Yangui, D Garrot, J S Lauret, A Lusson, G Bouchez, E Deleporte, S Pillet, E E Bendeif, M Castro, S Triki, Y Abid, K Boukheddaden. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4. Journal of Physical Chemistry C, 2015, 119(41): 23638–23647
https://doi.org/10.1021/acs.jpcc.5b06211
37 C Zhou, H Lin, H Shi, Y Tian, C Pak, M Shatruk, Y Zhou, P Djurovich, M H Du, B Ma. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission. Angewandte Chemie International Edition, 2018, 57(4): 1021–1024
https://doi.org/10.1002/anie.201710383 pmid: 29215786
38 G Zhou, B Su, J Huang, Q Zhang, Z Xia. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Materials Science and Engineering R Reports, 2020, 141(1): 100548
https://doi.org/10.1016/j.mser.2020.100548
39 Z Yuan, C Zhou, Y Tian, Y Shu, J Messier, J C Wang, L J van de Burgt, K Kountouriotis, Y Xin, E Holt, K Schanze, R Clark, T Siegrist, B Ma. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051
https://doi.org/10.1038/ncomms14051 pmid: 28051092
40 X Li, P Guo, M Kepenekian, I Hadar, C Katan, J Even, C C Stoumpos, R D Schaller, M G Kanatzidis. Small cyclic diammonium cation templated (110)-oriented 2D halide (X= I, Br, Cl) perovskites with white-light emission. Chemistry of Materials, 2019, 31(9): 3582–3590
https://doi.org/10.1021/acs.chemmater.9b01511
41 L Mao, Y Wu, C C Stoumpos, B Traore, C Katan, J Even, M R Wasielewski, M G Kanatzidis. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963
https://doi.org/10.1021/jacs.7b06143 pmid: 28745881
42 R Gautier, M Paris, F Massuyeau. Exciton self-trapping in hybrid lead halides: role of halogen. Journal of the American Chemical Society, 2019, 141(32): 12619–12623
https://doi.org/10.1021/jacs.9b04262 pmid: 31339315
43 D Cortecchia, J Yin, A Bruno, S Z A Lo, G G Gurzadyan, S Mhaisalkar, J L Brédas, C Soci. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(11): 2771–2780
https://doi.org/10.1039/C7TC00366H
44 J Luo, X Wang, S Li, J Liu, Y Guo, G Niu, L Yao, Y Fu, L Gao, Q Dong, C Zhao, M Leng, F Ma, W Liang, L Wang, S Jin, J Han, L Zhang, J Etheridge, J Wang, Y Yan, E H Sargent, J Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
https://doi.org/10.1038/s41586-018-0691-0 pmid: 30405238
45 S Li, J Luo, J Liu, J Tang. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007
https://doi.org/10.1021/acs.jpclett.8b03604 pmid: 30946586
46 L Li, L Jin, Y Zhou, J Li, J Ma, S Wang, W Li, D Li. Filterless polarization-sensitive 2D perovskite narrowband photodetectors. Advanced Optical Materials, 2019, 7(23): 1900988
https://doi.org/10.1002/adom.201900988
[1] Yanhua LUO, Binbin YAN, Jianzhong ZHANG, Jianxiang WEN, Jun HE, Gang-Ding PENG. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Front. Optoelectron., 2018, 11(1): 37-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed