|
|
Terahertz aqueous photonics |
Qi JIN, Yiwen E, Xi-Cheng ZHANG( ) |
The Institute of Optics, University of Rochester, Rochester, NY 14627, USA |
|
|
Abstract Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime. A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force-induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200−800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water. For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse. To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested.
|
Keywords
terahertz (THz) wave generation
liquid water
laser-induced plasma
|
Corresponding Author(s):
Xi-Cheng ZHANG
|
Just Accepted Date: 27 October 2020
Online First Date: 16 December 2020
Issue Date: 19 April 2021
|
|
1 |
T Wang, P Klarskov, P U Jepsen. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425–431
https://doi.org/10.1109/TTHZ.2014.2322757
|
2 |
Y S Lee. Principles of Terahertz Science and Technology. Vol. 170. New York: Springer US, 2009
|
3 |
D M Mittleman. Twenty years of terahertz imaging. Optics Express, 2018, 26(8): 9417–9431
https://doi.org/10.1364/OE.26.009417
pmid: 29715894
|
4 |
J Zhao, Y e, K Williams, X C Zhang, R W Boyd. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light, Science & Applications, 2019, 8(1): 55
https://doi.org/10.1038/s41377-019-0166-6
pmid: 31231521
|
5 |
D C Look. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231(1–2): 61–73
https://doi.org/10.1016/0040-6090(93)90703-R
|
6 |
M C Beard, G M Turner, C A Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923
https://doi.org/10.1063/1.1416140
|
7 |
R W. BoydNonlinear Optics. 2nd ed. New York: Academic Press, 2003
|
8 |
J Hebling, G Almasi, I Kozma, J Kuhl. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
https://doi.org/10.1364/OE.10.001161
pmid: 19451975
|
9 |
J Hebling, K L Yeh, M C Hoffmann, B Bartal, K A Nelson. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
https://doi.org/10.1364/JOSAB.25.0000B6
|
10 |
J A Fülöp, L Pálfalvi, S Klingebiel, G Almási, F Krausz, S Karsch, J Hebling. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
https://doi.org/10.1364/OL.37.000557
pmid: 22344105
|
11 |
X C Zhang, X Ma, Y Jin, T M Lu, E P Boden, P D Phelps, K R Stewart, C P Yakymyshyn. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082
https://doi.org/10.1063/1.107968
|
12 |
C P Hauri, C Ruchert, C Vicario, F Ardana. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
https://doi.org/10.1063/1.3655331
|
13 |
M Shalaby, C P Hauri. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
https://doi.org/10.1038/ncomms6976
pmid: 25591665
|
14 |
J A Fülöp, S Tzortzakis, T Kampfrath. Laser-driven strong-field terahertz sources. Advanced Optical Materials, 2020, 8(3): 1900681
https://doi.org/10.1002/adom.201900681
|
15 |
H Hamster, A Sullivan, S Gordon, W White, R W Falcone. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
https://doi.org/10.1103/PhysRevLett.71.2725
pmid: 10054760
|
16 |
H Hamster, A Sullivan, S Gordon, R W Falcone. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677
https://doi.org/10.1103/PhysRevE.49.671
pmid: 9961261
|
17 |
D J Cook, R M Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210
pmid: 18066171
|
18 |
K Johnson, M Price-Gallagher, O Mamer, A Lesimple, C Fletcher, Y Chen, X Lu, M Yamaguchi, X C Zhang. Water vapor: an extraordinary terahertz wave source under optical excitation. Physics Letters, 2008, 372(38): 6037–6040 (Part A)
https://doi.org/10.1016/j.physleta.2008.07.071
|
19 |
X Xie, J Dai, X C Zhang. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
https://doi.org/10.1103/PhysRevLett.96.075005
pmid: 16606102
|
20 |
K Y Kim, J H Glownia, A J Taylor, G Rodriguez. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577
pmid: 19532704
|
21 |
K Y Kim, A Taylor, J Glownia, G Rodriguez. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609
https://doi.org/10.1038/nphoton.2008.153
|
22 |
K Y Kim. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706
https://doi.org/10.1063/1.3134422
|
23 |
N Karpowicz, X C Zhang. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001
https://doi.org/10.1103/PhysRevLett.102.093001
pmid: 19392516
|
24 |
C Ronne, L Thrane, P O Åstrand, A Wallqvist, K V Mikkelsen, S R Keiding. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107(14): 5319–5331
https://doi.org/10.1063/1.474242
|
25 |
L Thrane, R H Jacobsen, P Uhd Jepsen, S R Keiding. THz reflection spectroscopy of liquid water. Chemical Physics Letters, 1995, 240(4): 330–333
https://doi.org/10.1016/0009-2614(95)00543-D
|
26 |
J C Kotz, P M Treichel, J Townsend. Chemistry and Chemical Reactivity. Raleigh, NC: Cengage Learning, 2012
|
27 |
D Engels, J Schmid-Burgk, C Walmsley. Water maser emission from OH/IR stars. Astronomy & Astrophysics, 1986, 167: 129–144
|
28 |
D A Neufeld, G J Melnick. Excitation of millimeter and submillimeter water masers. Astrophysical Journal, 1991, 368: 215–230
https://doi.org/10.1086/169685
|
29 |
D A Neufeld, P R Maloney, S Conger. Water maser emission from X-ray-heated circumnuclear gas in active galaxies. Astrophysical Journal, 1994, 436: 127–130
https://doi.org/10.1086/187649
|
30 |
R R Alfano, S Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters, 1970, 24(11): 592–594
https://doi.org/10.1103/PhysRevLett.24.592
|
31 |
T Jimbo, V L Caplan, Q X Li, Q Z Wang, P P Ho, R R Alfano. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations. Optics Letters, 1987, 12(7): 477–479
https://doi.org/10.1364/OL.12.000477
pmid: 19741770
|
32 |
V Kandidov, O Kosareva, I Golubtsov, W Liu, A Becker, N Akozbek, C M Bowden, S L Chin. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Applied Physics B, Lasers and Optics, 2003, 77(2–3): 149–165
https://doi.org/10.1007/s00340-003-1214-7
|
33 |
W Liu, S Petit, A Becker, N Aközbek, C M Bowden, S L Chin. Intensity clamping of a femtosecond laser pulse in condensed matter. Optics Communications, 2002, 202(1–3): 189–197
https://doi.org/10.1016/S0030-4018(01)01698-4
|
34 |
A Dharmadhikari, F Rajgara, D Mathur. Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses. Applied Physics B, Lasers and Optics, 2005, 80(1): 61–66
https://doi.org/10.1007/s00340-004-1682-4
|
35 |
N Kaya, J Strohaber, A A Kolomenskii, G Kaya, H Schroeder, H A Schuessler. White-light generation using spatially-structured beams of femtosecond radiation. Optics Express, 2012, 20(12): 13337–13346
https://doi.org/10.1364/OE.20.013337
pmid: 22714362
|
36 |
J A Dharmadhikari, G Steinmeyer, G Gopakumar, D Mathur, A K Dharmadhikari. Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Optics Letters, 2016, 41(15): 3475–3478
https://doi.org/10.1364/OL.41.003475
pmid: 27472597
|
37 |
D Attwood, A Sakdinawat. X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge: Cambridge University Press, 2017
|
38 |
S McNaught, J Fan, E Parra, H M Milchberg. A pump–probe investigation of laser-droplet plasma dynamics. Applied Physics Letters, 2001, 79(25): 4100–4102
https://doi.org/10.1063/1.1426266
|
39 |
S Düsterer, H Schwoerer, W Ziegler, C Ziener, R Sauerbrey. Optimization of EUV radiation yield from laser-produced plasma. Applied Physics B, Lasers and Optics, 2001, 73(7): 693–698 doi:10.1007/s003400100730
|
40 |
H G Kurz, D S Steingrube, D Ristau, M Lein, U Morgner, M Kovačev. High-order-harmonic generation from dense water microdroplets. Physical Review A, 2013, 87(6): 063811 doi:10.1103/PhysRevA.87.063811
|
41 |
A Flettner, T Pfeifer, D Walter, C Winterfeldt, C Spielmann, G Gerber. High-harmonic generation and plasma radiation from water microdroplets. Applied Physics B, Lasers and Optics, 2003, 77(8): 747–751
https://doi.org/10.1007/s00340-003-1329-x
|
42 |
T D Donnelly, M Rust, I Weiner, M Allen, R A Smith, C A Steinke, S Wilks, J Zweiback, T E Cowan, T Ditmire. Hard X-ray and hot electron production from intense laser irradiation of wavelength-scale particles. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2001, 34(10): L313–L320
https://doi.org/10.1088/0953-4075/34/10/101
|
43 |
L Malmqvist, L Rymell, H M Hertz. Droplet‐target laser‐plasma source for proximity X‐ray lithography. Applied Physics Letters, 1996, 68(19): 2627–2629
https://doi.org/10.1063/1.116203
|
44 |
M Berglund, L Rymell, H M Hertz. Ultraviolet prepulse for enhanced X‐ray emission and brightness from droplet‐target laser plasmas. Applied Physics Letters, 1996, 69(12): 1683–1685
https://doi.org/10.1063/1.117027
|
45 |
L Rymell, H M Hertz. Droplet target for low-debris laser-plasma soft X-ray generation. Optics Communications, 1993, 103(1–2): 105–110
https://doi.org/10.1016/0030-4018(93)90651-K
|
46 |
D N Nikogosyan, A A Oraevsky, V I Rupasov. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation. Chemical Physics, 1983, 77(1): 131–143
https://doi.org/10.1016/0301-0104(83)85070-8
|
47 |
R A Crowell, D M Bartels. Multiphoton ionization of liquid water with 3.0-5.0 eV photons. Journal of Physical Chemistry, 1996, 100(45): 17940–17949
https://doi.org/10.1021/jp9610978
|
48 |
P K Kennedy. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE Journal of Quantum Electronics, 1995, 31(12): 2241–2249
https://doi.org/10.1109/3.477753
|
49 |
P K Kennedy, D X Hammer, B A Rockwell. Laser-induced breakdown in aqueous media. Progress in Quantum Electronics, 1997, 21(3): 155–248
https://doi.org/10.1016/S0079-6727(97)00002-5
|
50 |
H Hirori, A Doi, F Blanchard, K Tanaka. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
https://doi.org/10.1063/1.3560062
|
51 |
F Blanchard, L Razzari, H C Bandulet, G Sharma, R Morandotti, J C Kieffer, T Ozaki, M Reid, H F Tiedje, H K Haugen, F A Hegmann. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220
https://doi.org/10.1364/OE.15.013212
pmid: 19550589
|
52 |
Q Wu, X C Zhang. Free‐space electro‐optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
https://doi.org/10.1063/1.114909
|
53 |
Q Jin, Y E, K Williams, J Dai, X C Zhang. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103
https://doi.org/10.1063/1.4990824
|
54 |
L L Zhang, W M Wang, T Wu, S J Feng, K Kang, C L Zhang, Y Zhang, Y T Li, Z M Sheng, X C Zhang. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005
https://doi.org/10.1103/PhysRevApplied.12.014005
|
55 |
W M Wang, P Gibbon, Z M Sheng, Y T Li. Integrated simulation approach for laser-driven fast ignition. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(1): 013101
https://doi.org/10.1103/PhysRevE.91.013101
pmid: 25679717
|
56 |
F Buccheri, X C Zhang. Terahertz emission from laser-induced microplasma in ambient air. Optica, 2015, 2(4): 366–369
https://doi.org/10.1364/OPTICA.2.000366
|
57 |
J Z Zhang, J K Lam, C F Wood, B T Chu, R K Chang. Explosive vaporization of a large transparent droplet irradiated by a high intensity laser. Applied Optics, 1987, 26(22): 4731–4737
https://doi.org/10.1364/AO.26.004731
pmid: 20523436
|
58 |
C Schaffer, N Nishimura, E Glezer, A Kim, E Mazur. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Optics Express, 2002, 10(3): 196–203
https://doi.org/10.1364/OE.10.000196
pmid: 19424350
|
59 |
F Courvoisier, V Boutou, C Favre, S C Hill, J P Wolf. Plasma formation dynamics within a water microdroplet on femtosecond time scales. Optics Letters, 2003, 28(3): 206–208
https://doi.org/10.1364/OL.28.000206
pmid: 12656333
|
60 |
A Lindinger, J Hagen, L D Socaciu, T M Bernhardt, L Wöste, D Duft, T Leisner. Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Applied Optics, 2004, 43(27): 5263–5269
https://doi.org/10.1364/AO.43.005263
pmid: 15473248
|
61 |
C A Stan, D Milathianaki, H Laksmono, R G Sierra, T A McQueen, M Messerschmidt, G J Williams, J E Koglin, T J Lane, M J Hayes, S A H Guillet, M Liang, A L Aquila, P R Willmott, J S Robinson, K L Gumerlock, S Botha, K Nass, I Schlichting, R L Shoeman, H A Stone, S Boutet. Liquid explosions induced by X-ray laser pulses. Nature Physics, 2016, 12(10): 966–971
https://doi.org/10.1038/nphys3779
|
62 |
Y E, Q Jin, A Tcypkin, X C Zhang. Terahertz wave generation from liquid water films via laser-induced breakdown. Applied Physics Letters, 2018, 113(18): 181103
https://doi.org/10.1063/1.5054599
|
63 |
H B Bebb, A Gold. Multiphoton ionization of hydrogen and rare-gas atoms. Physical Review, 1966, 143(1): 1–24
https://doi.org/10.1103/PhysRev.143.1
|
64 |
C DeMichelis. Laser induced gas breakdown: a bibliographical review. IEEE Journal of Quantum Electronics, 1969, 5(4): 188–202
https://doi.org/10.1109/JQE.1969.1075758
|
65 |
Y R Shen. The Principles of Nonlinear Optics. New York: Wiley, 1984
|
66 |
P Lambropoulos. Mechanisms for multiple ionization of atoms by strong pulsed lasers. Physical Review Letters, 1985, 55(20): 2141–2144
https://doi.org/10.1103/PhysRevLett.55.2141
pmid: 10032059
|
67 |
M D Perry, O L Landen, A Szöke, E M Campbell. Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser. Physical Review A: General Physics, 1988, 37(3): 747–760
https://doi.org/10.1103/PhysRevA.37.747
pmid: 9899717
|
68 |
L Keldysh. Ionization in the field of a strong electromagnetic wave. Soviet Physics, JETP, 1965, 20(5): 1307–1314
|
69 |
M V Ammosov. Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field. Soviet Physics, JETP, 1987, 64: 1191
|
70 |
M Bass, H Barrett. Avalanche breakdown and the probabilistic nature of laser-induced damage. IEEE Journal of Quantum Electronics, 1972, 8(3): 338–343
https://doi.org/10.1109/JQE.1972.1076971
|
71 |
N Bloembergen. Laser-induced electric breakdown in solids. IEEE Journal of Quantum Electronics, 1974, 10(3): 375–386
https://doi.org/10.1109/JQE.1974.1068132
|
72 |
C G Morgan. Laser-induced breakdown of gases. Reports on Progress in Physics, 1975, 38(5): 621–665
https://doi.org/10.1088/0034-4885/38/5/002
|
73 |
C Puliafito, R Steinert. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations. IEEE Journal of Quantum Electronics, 1984, 20(12): 1442–1448
https://doi.org/10.1109/JQE.1984.1072343
|
74 |
J Noack, A Vogel. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics, 1999, 35(8): 1156–1167
https://doi.org/10.1109/3.777215
|
75 |
F Williams, S Varma, S Hillenius. Liquid water as a lone‐pair amorphous semiconductor. Journal of Chemical Physics, 1976, 64(4): 1549–1554
https://doi.org/10.1063/1.432377
|
76 |
C Sacchi. Laser-induced electric breakdown in water. Journal of the Optical Society of America B, Optical Physics, 1991, 8(2): 337–345
https://doi.org/10.1364/JOSAB.8.000337
|
77 |
Q Feng, J V Moloney, A C Newell, E M Wright, K Cook, P K Kennedy, D X Hammer, B A Rockwell, C R Thompson. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE Journal of Quantum Electronics, 1997, 33(2): 127–137
https://doi.org/10.1109/3.552252
|
78 |
Y P Raĭzer. Reviews of topical problems: breakdown and heating of gases under the influence of a laser beam. Soviet Physics Uspekhi, 1966, 8(5): 650–673
|
79 |
K Hatanaka, T Ida, H Ono, S Matsushima, H Fukumura, S Juodkazis, H Misawa. Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses. Optics Express, 2008, 16(17): 12650–12657
https://doi.org/10.1364/OE.16.012650
pmid: 18711502
|
80 |
J Dai, J Liu, X C Zhang. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
https://doi.org/10.1109/JSTQE.2010.2047007
|
81 |
M Kreß, T Löffler, M D Thomson, R Dörner, H Gimpel, K Zrost, T Ergler, R Moshammer, U Morgner, J Ullrich, H G Roskos. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331
https://doi.org/10.1038/nphys286
|
82 |
P Gaal, W Kuehn, K Reimann, M Woerner, T Elsaesser, R Hey. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213
https://doi.org/10.1038/nature06399
pmid: 18097404
|
83 |
H Roskos, M Thomson, M Kreß, T Löffler. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
https://doi.org/10.1002/lpor.200710025
|
84 |
T Oh, Y Yoo, Y You, K Y Kim. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
https://doi.org/10.1063/1.4891678
|
85 |
M D Thomson, V Blank, H G Roskos. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182
https://doi.org/10.1364/OE.18.023173
pmid: 21164658
|
86 |
X C Zhang, A Shkurinov, Y Zhang. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
https://doi.org/10.1038/nphoton.2016.249
|
87 |
J Dai, N Karpowicz, X C Zhang. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
https://doi.org/10.1103/PhysRevLett.103.023001
pmid: 19659200
|
88 |
H Wen, A M Lindenberg. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902
https://doi.org/10.1103/PhysRevLett.103.023902
pmid: 19659205
|
89 |
J Dai, X C Zhang. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780
https://doi.org/10.1364/OL.39.000777
pmid: 24562204
|
90 |
I Dey, K Jana, V Y Fedorov, A D Koulouklidis, A Mondal, M Shaikh, D Sarkar, A D Lad, S Tzortzakis, A Couairon, G R Kumar. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184
https://doi.org/10.1038/s41467-017-01382-x
pmid: 29084961
|
91 |
Y Shen, T Watanabe, D A Arena, C C Kao, J B Murphy, T Y Tsang, X J Wang, G L Carr. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901
https://doi.org/10.1103/PhysRevLett.99.043901
pmid: 17678365
|
92 |
D Turchinovich, J M Hvam, M C Hoffmann. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304
https://doi.org/10.1103/PhysRevB.85.201304
|
93 |
E A Nanni, W R Huang, K H Hong, K Ravi, A Fallahi, G Moriena, R J Dwayne Miller, F X Kärtner. Terahertz-driven linear electron acceleration. Nature Communications, 2015, 6(1): 8486
https://doi.org/10.1038/ncomms9486
pmid: 26439410
|
94 |
D Zhang, A Fallahi, M Hemmer, X Wu, M Fakhari, Y Hua, H Cankaya, A L Calendron, L E Zapata, N H Matlis, F X Kärtner. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 2018, 12(6): 336–342
https://doi.org/10.1038/s41566-018-0138-z
pmid: 29881446
|
95 |
Q Jin, J Dai, Y E, X C Zhang. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Applied Physics Letters, 2018, 113(26): 261101
https://doi.org/10.1063/1.5064644
|
96 |
P P Kiran, S Bagchi, S R Krishnan, C L Arnold, G R Kumar, A Couairon. Focal dynamics of multiple filaments: Microscopic imaging and reconstruction. Physical Review A., 2010, 82(1): 013805
https://doi.org/10.1103/PhysRevA.82.013805
|
97 |
X L Liu, X Lu, X Liu, T T Xi, F Liu, J L Ma, J Zhang. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Optics Express, 2010, 18(25): 26007–26017
https://doi.org/10.1364/OE.18.026007
pmid: 21164948
|
98 |
Q Jin, Y E, S Gao, X C Zhang. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Advanced Photonics, 2020, 2(1): 015001
https://doi.org/10.1117/1.AP.2.1.015001
|
99 |
S L Chin. Femtosecond Laser Filamentation. Vol. 55. New York: Springer US, 2010
|
100 |
F Docchio. Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. EPL, 1988, 6(5): 407–412 (Europhysics Letters)
https://doi.org/10.1209/0295-5075/6/5/006
|
101 |
Q Feng, E M Wright, J V Moloney, A C Newell. Laser-induced breakdown versus self-focusing for focused picosecond pulses in water. Optics Letters, 1995, 20(19): 1958–1960
https://doi.org/10.1364/OL.20.001958
pmid: 19862216
|
102 |
J Dai, X C Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117
https://doi.org/10.1063/1.3068501
|
103 |
T D Dorney, R G Baraniuk, D M Mittleman. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(7): 1562–1571
https://doi.org/10.1364/JOSAA.18.001562
pmid: 11444549
|
104 |
I Babushkin, W Kuehn, C Köhler, S Skupin, L Bergé, K Reimann, M Woerner, J Herrmann, T Elsaesser. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
https://doi.org/10.1103/PhysRevLett.105.053903
pmid: 20867920
|
105 |
L Bergé, S Skupin, C Köhler, I Babushkin, J Herrmann. 3D numerical simulations of THz generation by two-color laser filaments. Physical Review Letters, 2013, 110(7): 073901
https://doi.org/10.1103/PhysRevLett.110.073901
pmid: 25166373
|
106 |
P Sprangle, J R Peñano, B Hafizi, C A Kapetanakos. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): 066415
https://doi.org/10.1103/PhysRevE.69.066415
pmid: 15244753
|
107 |
E A Ponomareva, S A Stumpf, A N Tcypkin, S A Kozlov. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation. Optics Letters, 2019, 44(22): 5485–5488
https://doi.org/10.1364/OL.44.005485
pmid: 31730089
|
108 |
A N Tcypkin, E A Ponomareva, S E Putilin, S V Smirnov, S A Shtumpf, M V Melnik, Y E, S A Kozlov, X C Zhang. Flat liquid jet as a highly efficient source of terahertz radiation. Optics Express, 2019, 27(11): 15485–15494
https://doi.org/10.1364/OE.27.015485
pmid: 31163744
|
109 |
Y E, Q Jin, X C Zhang. Enhancement of terahertz emission by a preformed plasma in liquid water. Applied Physics Letters, 2019, 115(10): 101101 doi:10.1063/1.5119812
|
110 |
E A Ponomareva, A N Tcypkin, S V Smirnov, S E Putilin, E Yiwen, S A Kozlov, X C Zhang. Double-pump technique-one step closer towards efficient liquid-based THz sources. Optics Express, 2019, 27(22): 32855–32862
https://doi.org/10.1364/OE.27.032855
pmid: 31684490
|
111 |
H H Huang, T Nagashima, W H Hsu, S Juodkazis, K Hatanaka. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials (Basel, Switzerland), 2018, 8(7): 523
https://doi.org/10.3390/nano8070523
pmid: 30011794
|
112 |
H H Huang, T Nagashima, T Yonezawa, Y Matsuo, S H Ng, S Juodkazis, K Hatanaka. Giant enhancement of THz wave emission under double-pulse excitation of thin water flow. Applied Sciences (Basel, Switzerland), 2020, 10(6): 2031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|