Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (4) : 360-370    https://doi.org/10.1007/s12200-020-1094-z
RESEARCH ARTICLE
Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties
Tatiana A. SAVELIEVA1,2(), Marina N. KURYANOVA2, Ekaterina V. AKHLYUSTINA2, Kirill G. LINKOV1, Gennady A. MEEROVICH1,2, Victor B. LOSCHENOV1,2
1. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
2. National Research Nuclear University MEPhI, Moscow115409, Russia
 Download: PDF(1460 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

During intraoperative fluorescence navigation to remove various neoplasms and during pharmacokinetic studies of photosensitizers in laboratory animals, in many cases, the ratio of photosensitizer accumulation in the tumor and normal tissue can reach ≥10-fold, which inevitably changes their optical properties. At the same time, the tumor formation process causes various metabolic and structural changes at cellular and tissue levels, which lead to changes in optical properties. A hardware–software complex for the spectral–fluorescence studies of the content of fluorochromes in biological tissues with significantly different optical properties was developed, and it was tested on optical phantoms with various concentrations of photosensitizers, absorbers, and scatterers. To correct the influence of optical properties on the photosensitizer concentration analysis by fluorescence spectroscopy, we propose the spectrum-processing algorithm, which combines empirical and theory-based approaches.

Keywords fluorescence      spectroscopy      scattering      absorption      attenuation correction      optical phantoms     
Corresponding Author(s): Tatiana A. SAVELIEVA   
Just Accepted Date: 13 November 2020   Online First Date: 09 December 2020    Issue Date: 31 December 2020
 Cite this article:   
Tatiana A. SAVELIEVA,Marina N. KURYANOVA,Ekaterina V. AKHLYUSTINA, et al. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Front. Optoelectron., 2020, 13(4): 360-370.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1094-z
https://academic.hep.com.cn/foe/EN/Y2020/V13/I4/360
Fig.1  (a) Block diagram of a spectral analyzer for the simultaneous recording of fluorescence and diffuse reflection spectra with a filter system for recording fluorescence of photosensitizers in the near-infrared range. (b) Scheme of signal formation in the fiber-optic probe
parameter value
fat emulsion concentration/% 0.5 1 2 4 8
µ′s (550 nm)/cm1 7.5 15 30 60 120
µ′s (632 nm)/cm1 6.5 13 26 52 104
µ′s (700 nm)/cm1 5.5 11 22 44 88
Tab.1  Content of fat emulsion in optical phantoms and the corresponding values of the scattering coefficient in three spectral ranges in accordance with Ref. [3]
parameter value
blood content in tissues (% or mL/100 g) 1 2 4 8
Hb in tissue/(mmol·L-1) 0.024 0.048 0.096 0.192
HbO2µa (550 nm)/cm1 2.235 4.47 8.94 17.88
Hbµa (550 nm)/cm1 2.775 5.55 11.1 22.2
HbO2µa (632 nm)/cm1 0.032 0.064 0.128 0.256
Hbµa (632 nm)/cm-1 0.267 0.534 1.068 2.136
HbO2 µa (700 nm)/cm1 0.015 0.03 0.06 0.12
Hb µa (700 nm)/cm1 0.093 0.186 0.372 0.744
Tab.2  Blood content in optical phantoms and the corresponding values of the absorption coefficient in two spectral ranges in accordance with Ref. [17]
Fig.2  (a) Dependence of diffusely reflected laser radiation on the concentration of fat emulsion for different fluorophore concentrations, marked with different colors. (b) Dependence of fluorescence intensity on the fluorophore concentration for different concentrations of fat emulsion, marked in different colors
Fig.3  Dependence of fluorescence index on the concentration of fat emulsion for different exposure values (in ms) for 1?mg/L of PpIX (without hemoglobin)
Fig.4  Effect of the concentration of the scatterer (along the x-axis) and absorber (graphs are marked in different colors) on the fluorescence index for (a) 1?mg/L of PpIX and (b) 10?mg/L of PpIX and initial fluorescence and diffuse reflection dependencies for (c) 1?mg/L of PpIX and (d) 10?mg/L of PpIX
Fig.5  Attenuation correction for fluorescence signal with linear approximation for (a) 1?mg/L of PpIX and (b) 10?mg/L of PpIX
Fig.6  Attenuation correction for fluorescence signal with the power law approximation for (a) 1 mg/L of PpIX and (b) 10 mg/L of PpIX
Fig.7  Attenuation correction for fluorescence signal using the combined Beer–Lambert law approximation for (a) 1?mg/L of PpIX and (b) 10?mg/L of PpIX
approximation type average variation in determining the photosensitizer concentration for phantoms with 1 mg/L of PpIX/% average variation in determining the photosensitizer concentration for phantoms with 10 mg/L of PpIX/%
fluorescence index 13 28
linear approximation 16 15
power-law approximation 11.6 9.6
combined (Lambert–Beer law and diffuse approximation) 14 18.5
Tab.3  Results of fluorescence attenuation correction with different approximations
1 V B Loschenov, K G Linkov, T A Savelieva, M V Loschenov, S S Model, A V Borodkin. Hardware and tool equipment for fluorescence diagnostics and photodynamic therapy. Photodynamic Therapy and Photodyagnosis, 2013, 2(3): 17–25
2 G A Meerovich, I G Tiganova, E A Makarova, I G Meerovich, J Romanova, E R Tolordova, N V Alekseeva, T V Stepanova, K Yu, E A Lukyanets, N V Krivospitskaya, I P Sipailo, T V Baikova, V B Loschenov, S A Gonchukov. Photodynamic inactivation of bacteria and biofilms using cationic bacteriochlorins. Journal of Physics: Conference Series, 2016, 691: 012011
https://doi.org/10.1088/1742-6596/691/1/012011
3 G A Meerovich, E V Akhlyustina, I G Tiganova, V A Panov, V S Tyukova, E R Tolordava, N V Alekseeva, K G Linkov, M Romanova Yu, M A Grin, A F Mironov, V B Loshchenov, A D Kaprin, E V Filonenko. Study of photosensitizer for antibacterial photodynamic therapy based on cyclodextrin formulation of 133-n-(n-methylnicotinyl)bacteriopurpurinimide methyl ester. Biomedical Photonics, 2017, 6(3): 16–32
https://doi.org/10.24931/2413-9432-2017-6-3-16-32
4 R S Bradley, M S Thorniley. A review of attenuation correction techniques for tissue fluorescence. Journal of the Royal Society, Interface, 2006, 3(6): 1–13
https://doi.org/10.1098/rsif.2005.0066 pmid: 16849213
5 N Haj-Hosseini, S Lowndes, G Salerud, K Wårdell. Blood interference in fiber-optical based fluorescence guided resection of glioma using 5-aminolevulinic acid. In: Proceedings of SPIE 7883, Photonic Therapeutics and Diagnostics. San Francisco: SPIE, 2011, VII: 78833R
6 Y Zhang, H Hou, Y Zhang, Y Wang, L Zhu, M Dong, Y Liu. Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening. Biomedical Optics Express, 2018, 9(4): 1795–1808
https://doi.org/10.1364/BOE.9.001795 pmid: 29675320
7 F F Jöbsis, M O’Connor, A Vitale, H Vreman. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Journal of Neurophysiology, 1971, 34(5): 735–749
https://doi.org/10.1152/jn.1971.34.5.735 pmid: 4398562
8 R S Kramer, R D Pearlstein. Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Science, 1979, 205(4407): 693–696
https://doi.org/10.1126/science.223243 pmid: 223243
9 M Canpolat, J R Mourant. Optical measurement of photosensitizer concentration using a probe with a small source-detector fiber separation. Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 3911: 10–18
https://doi.org/10.1117/12.384915
10 G A Meerovich, E V Akhlyustina, T A Savelieva, K G Linkov, V B Loschenov. Optical spectroanalyzer with extended dynamic range for pharmacokinetic investigations of photosensitizers in biotissue. Biomedical Photonics, 2019, 8(1): 46–51
https://doi.org/10.24931/2413-9432-2019-8-1-46-51
11 R C Studinski, I A Vitkin. Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction. Journal of Biomedical Optics, 2000, 5(3): 330–337
https://doi.org/10.1117/1.430004 pmid: 10958620
12 N Kalyagina, V Loschenov, D Wolf, C Daul, W Blondel, T Savelieva. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall. Applied Physics B, Lasers and Optics, 2011, 105(3): 631–639
https://doi.org/10.1007/s00340-011-4678-x
13 J Kalkman, A V Bykov, D J Faber, T G van Leeuwen. Multiple and dependent scattering effects in Doppler optical coherence tomography. Optics Express, 2010, 18(4): 3883–3892
https://doi.org/10.1364/OE.18.003883 pmid: 20389399
14 F Martelli, G Zaccanti. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method. Optics Express, 2007, 15(2): 486–500
https://doi.org/10.1364/OE.15.000486 pmid: 19532267
15 P Di Ninni, F Martelli, G Zaccanti. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms. Biomedical Optics Express, 2011, 2(8): 2265–2278
https://doi.org/10.1364/BOE.2.002265 pmid: 21833363
16 R Michels, F Foschum, A Kienle. Optical properties of fat emulsions. Optics Express, 2008, 16(8): 5907–5925
https://doi.org/10.1364/OE.16.005907 pmid: 18542702
17 S. Prahl Optical absorption of hemoglobin. Available at
18 D T Delpy, M Cope, P van der Zee, S Arridge, S Wray, J Wyatt. Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 1988, 33(12): 1433–1442
https://doi.org/10.1088/0031-9155/33/12/008 pmid: 3237772
19 T A Savelieva, V B Loshchenov, S A Goryainov, L V Shishkina, A A Potapov. A spectroscopic method for simultaneous determination of protoporphyrin IX and hemoglobin in the nerve tissues at intraoperative diagnosis. Russian Journal of General Chemistry, 2015, 85(6): 1549–1557
https://doi.org/10.1134/S1070363215060341
20 S A Goryaynov, V A Okhlopkov, D A Golbin, K A Chernyshov, D V Svistov, B V Martynov, A V Kim, V A Byvaltsev, G V Pavlova, A Batalov, N A Konovalov, P V Zelenkov, V B Loschenov, A A Potapov. Fluorescence diagnosis in neurooncology: retrospective analysis of 653 cases. Frontiers in Oncology, 2019, 9: 830
https://doi.org/10.3389/fonc.2019.00830 pmid: 31552168
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Cong SHEN, Peili LI, Xinyuan ZHU, Yuanfang ZHANG, Yaqiao HAN. Ultra-flat broadband microwave frequency comb generation based on optical frequency comb with a multiple-quantum-well electro-absorption modulator in critical state[J]. Front. Optoelectron., 2019, 12(4): 382-391.
[3] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[4] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[5] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[6] Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
[7] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[8] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[9] Tao Pan, Bingren Yan, Jiemei Chen, Lijun Yao. Discrete combination method based on equidistant wavelength screening and its application to near-infrared analysis of hemoglobin[J]. Front. Optoelectron., 2018, 11(3): 296-305.
[10] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[11] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[12] Tatiana I. KALGANOVA, Anna G. ORLOVA, German Yu. GOLUBYATNIKOV, Anna V. MASLENNIKOVA, Ilya V. TURCHIN. Dynamic influence of pentoxifylline on the oxygen status of Pliss’s lymph sarcoma in rat[J]. Front. Optoelectron., 2017, 10(3): 317-322.
[13] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[14] Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMÜLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STRÖBL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
[15] Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Front. Optoelectron., 2017, 10(3): 255-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed