Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (4) : 381-392    https://doi.org/10.1007/s12200-020-1096-x
RESEARCH ARTICLE
Line-field confocal optical coherence tomography for three-dimensional skin imaging
Jonas OGIEN1, Anthony DAURES1, Maxime CAZALAS1, Jean-Luc PERROT2, Arnaud DUBOIS3()
1. DAMAE Medical, Paris 75013, France
2. CHU St-Etienne, Service Dermatologie, Saint-Etienne 42055, France
3. Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau 91127, France
 Download: PDF(1567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports on the latest advances in line-field confocal optical coherence tomography (LC-OCT), a recently invented imaging technology that now allows the generation of either horizontal (x× y) section images at an adjustable depth or vertical (x× z) section images at an adjustable lateral position, as well as three-dimensional images. For both two-dimensional imaging modes, images are acquired in real-time, with real-time control of the depth and lateral positions. Three-dimensional (x× y× z) images are acquired from a stack of horizontal section images. The device is in the form of a portable probe. The handle of the probe has a button and a scroll wheel allowing the user to control the imaging modes. Using a supercontinuum laser as a broadband light source and a high numerical microscope objective, an isotropic spatial resolution of ~1 mm is achieved. The field of view of the three-dimensional images is 1.2 mm × 0.5 mm × 0.5 mm (x× y× z). Images of skin tissues are presented to demonstrate the potential of the technology in dermatology.

Keywords optical coherence tomography (OCT)      microscopy      three-dimensional imaging      dermatology     
Corresponding Author(s): Arnaud DUBOIS   
Just Accepted Date: 20 November 2020   Online First Date: 14 December 2020    Issue Date: 31 December 2020
 Cite this article:   
Jonas OGIEN,Anthony DAURES,Maxime CAZALAS, et al. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1096-x
https://academic.hep.com.cn/foe/EN/Y2020/V13/I4/381
Fig.1  Schematic diagram of the latest LC-OCT prototype
Fig.2  LC-OCT probe and cart used by a dermatologist in a clinical setting
Fig.3  Periodic current driving the oscillation of the PZT stage. The asymmetric triangle signal has a frequency of fPZT=1/T =8? Hz and a duty cycle of 80%. Images are acquired only during the slow positive ramps
Fig.4  Periodic current driving the oscillation of the mirror galvanometer. The asymmetric triangle signal has a frequency of fgalvo=1/T=8?Hz and a duty cycle of 90%. Images are acquired only during the slow positive ramps
Fig.5  LC-OCT images of healthy human skin in vivo obtained in real-time (8 frames/s). Horizontal section images obtained at the level of the stratum spinosum (a), the stratum basale (b) and the superficial dermis (c). A vertical section image is also displayed (d). Scale bars are 200 µm
Fig.6  Three-dimensional volume rendering of in vivo human healthy skin, digitally “cut” at different depths
Fig.7  (a) Vertical and horizontal cross-section images obtained from a three-dimensional LC-OCT image. (b) Three-dimensional visualization from vertical and horizontal cross-section images
Fig.8  Three-dimensional visualization of sweat ducts of the palm of the hand from application of a maximum intensity projection to a three-dimensional LC-OCT image
Fig.9  Three-dimensional visualization of capillaries of the nailfold from application of a minimum intensity projection to a three-dimensional LC-OCT image
Fig.10  Skin layers segmentation of a three-dimensional LC-OCT image. The green volume corresponds to the segmented epidermis, while the purple volume corresponds to the dermis
1 A F Fercher. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173
https://doi.org/10.1117/12.231361 pmid: 23014682
2 A G Podoleanu. Optical coherence tomography. Journal of Microscopy, 2012, 247(3): 209–219
https://doi.org/10.1111/j.1365-2818.2012.03619.x pmid: 22708800
3 A M Zysk, F T Nguyen, A L Oldenburg, D L Marks, S A Boppart. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics, 2007, 12(5): 051403
https://doi.org/10.1117/1.2793736 pmid: 17994864
4 J S Schuman, C A Puliafito, J G Fujimoto, J S Duker. Optical Coherence Tomography of Ocular Diseases. 3rd ed. New Jersey: Slack Inc., 2013
5 H G Bezerra, M A Costa, G Guagliumi, A M Rollins, D I Simon. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035–1046
pmid: 19926041
6 D C Adler, Y Chen, R Huber, J Schmitt, J Connolly, J G Fujimoto. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics, 2007, 1(12): 709–716
https://doi.org/10.1038/nphoton.2007.228
7 X Yu, Q Ding, C Hu, G Mu, Y Deng, Y Luo, Z Yuan, H Yu, L Liu. Evaluating micro-optical coherence tomography as a feasible imaging tool for pancreatic disease diagnosis. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1–8
https://doi.org/10.1109/JSTQE.2018.2827662
8 J Men, Y Huang, J Solanki, X Zeng, A Alex, J Jerwick, Z Zhang, R E Tanzi, A Li, C Zhou. Optical coherence tomography for brain imaging and developmental biology. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 120–132
https://doi.org/10.1109/JSTQE.2015.2513667 pmid: 27721647
9 Y Fan, Y Xia, X Zhang, Y Sun, J Tang, L Zhang, H Liao. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Bioscience Trends, 2018, 12(1): 12–23
https://doi.org/10.5582/bst.2017.01258 pmid: 29332928
10 A Levine, K Wang, O Markowitz. Optical coherence tomography in the diagnosis of skin cancer. Dermatologic Clinics, 2017, 35(4): 465–488
https://doi.org/10.1016/j.det.2017.06.008 pmid: 28886803
11 W Drexler, U Morgner, F X Kärtner, C Pitris, S A Boppart, X D Li, E P Ippen, J G Fujimoto. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 1999, 24(17): 1221–1223
https://doi.org/10.1364/OL.24.001221 pmid: 18073990
12 B Povazay, K Bizheva, A Unterhuber, B Hermann, H Sattmann, A F Fercher, W Drexler, A Apolonski, W J Wadsworth, J C Knight, P S J Russell, M Vetterlein, E Scherzer. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27(20): 1800–1802
https://doi.org/10.1364/OL.27.001800 pmid: 18033368
13 Y Wang, Y Zhao, J S Nelson, Z Chen, R S Windeler. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003, 28(3): 182–184
https://doi.org/10.1364/OL.28.000182 pmid: 12656325
14 A Aguirre, N Nishizawa, J Fujimoto, W Seitz, M Lederer, D Kopf. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006, 14(3): 1145–1160
https://doi.org/10.1364/OE.14.001145 pmid: 19503436
15 R A Leitgeb. En face optical coherence tomography: a technology review. Biomedical Optics Express, 2019, 10(5): 2177–2201
https://doi.org/10.1364/BOE.10.002177 pmid: 31143489
16 M Choma, M Sarunic, C Yang, J Izatt. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189
https://doi.org/10.1364/OE.11.002183 pmid: 19466106
17 K S Lee, J P Rolland. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Optics Letters, 2008, 33(15): 1696–1698
https://doi.org/10.1364/OL.33.001696 pmid: 18670507
18 R A Leitgeb, M Villiger, A H Bachmann, L Steinmann, T Lasser. Extended focus depth for Fourier domain optical coherence microscopy. Optics Letters, 2006, 31(16): 2450–2452
https://doi.org/10.1364/OL.31.002450 pmid: 16880852
19 S Tamborski, H C Lyu, H Dolezyczek, M Malinowska, G Wilczynski, D Szlag, T Lasser, M Wojtkowski, M Szkulmowski. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical Optics Express, 2016, 7(11): 4400–4414
https://doi.org/10.1364/BOE.7.004400 pmid: 27895982
20 L Liu, K K Chu, G H Houser, B J Diephuis, Y Li, E J Wilsterman, S Shastry, G Dierksen, S E Birket, M Mazur, S Byan-Parker, W E Grizzle, E J Sorscher, S M Rowe, G J Tearney. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS One, 2013, 8(1): e54473
https://doi.org/10.1371/journal.pone.0054473 pmid: 23372732
21 L Liu, C Liu, W C Howe, C J R Sheppard, N Chen. Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Optics Letters, 2007, 32(16): 2375–2377
https://doi.org/10.1364/OL.32.002375 pmid: 17700790
22 B Yin, K K Chu, C P Liang, K Singh, R Reddy, G J Tearney. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe. Optics Express, 2016, 24(5): 5555–5564
https://doi.org/10.1364/OE.24.005555 pmid: 29092377
23 T S Ralston, D L Marks, P S Carney, S A Boppart. Interferometric synthetic aperture microscopy. Nature Physics, 2007, 3(2): 129–134
https://doi.org/10.1038/nphys514 pmid: 25635181
24 S Coquoz, A Bouwens, P J Marchand, J Extermann, T Lasser. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. Optics Express, 2017, 25(24): 30807–30819
https://doi.org/10.1364/OE.25.030807 pmid: 29221107
25 L Yu, B Rao, J Zhang, J Su, Q Wang, S Guo, Z Chen. Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Optics Express, 2007, 15(12): 7634–7641
https://doi.org/10.1364/OE.15.007634 pmid: 19547090
26 D J Fechtig, A Kumar, W Drexler, R A Leitgeb. Full range line-field parallel swept source imaging utilizing digital refocusing. Journal of Modern Optics, 2015, 62(21): 1801–1807
https://doi.org/10.1080/09500340.2014.990938
27 J Mo, M de Groot, J F de Boer. Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Optics Express, 2013, 21(8): 10048–10061
https://doi.org/10.1364/OE.21.010048 pmid: 23609710
28 J Holmes. Theory and applications of multi-beam OCT. In: Proceedings of the 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics. Canterbury: SPIE, 2008
29 J Holmes, S Hattersley, N Stone, F Bazant-Hegemark, H Barr. Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications. In: Proceedings of Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII. San Jose: SPIE, 2008
30 L Yi, L Sun, W Ding. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. Journal of Biomedical Optics, 2017, 22(10): 1–8
https://doi.org/10.1117/1.JBO.22.10.106016 pmid: 29076306
31 J Li, Y Luo, X Wang, N Wang, E Bo, S Chen, S Chen, S Chen, M T Tsai, L Liu. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design. Applied Optics, 2018, 57(21): 6040–6046
https://doi.org/10.1364/AO.57.006040 pmid: 30118032
32 A S Nam, J Ren, B E Bouma, B J Vakoc. Demonstration of triband multi-focal imaging with optical coherence tomography. Applied Sciences (Basel, Switzerland), 2018, 8(12): 2395
https://doi.org/10.3390/app8122395 pmid: 31308961
33 R Huber, M Wojtkowski, J G Fujimoto, J Y Jiang, A E Cable. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 2005, 13(26): 10523–10538
https://doi.org/10.1364/OPEX.13.010523 pmid: 19503267
34 J P Rolland, P Meemon, S Murali, K P Thompson, K S Lee. Gabor-based fusion technique for optical coherence microscopy. Optics Express, 2010, 18(4): 3632–3642
https://doi.org/10.1364/OE.18.003632 pmid: 20389373
35 K S Lee, K P Thompson, P Meemon, J P Rolland. Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging. Optics Letters, 2011, 36(12): 2221–2223
https://doi.org/10.1364/OL.36.002221 pmid: 21685973
36 S Liu, J A Mulligan, S G Adie. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics. Biomedical Optics Express, 2018, 9(7): 3137–3152
https://doi.org/10.1364/BOE.9.003137 pmid: 29984088
37 J M Schmitt, S L Lee, K M Yung. An optical coherence microscope with enhanced resolving power in thick tissue. Optics Communications, 1997, 142(4–6): 203–207
https://doi.org/10.1016/S0030-4018(97)00280-0
38 F Lexer, C K Hitzenberger, W Drexler, S Molebny, H Sattmann, M Sticker, A F Fercher. Dynamic coherent focus OCT with depth-independent transversal resolution. Journal of Modern Optics, 1999, 46(3): 541–553
https://doi.org/10.1080/09500349908231282
39 P A Qi, P A Himmer, M L Gordon, V X D Yang, D L Dickensheets, I A Vitkin. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Optics Communications, 2004, 232(1–6): 123–128
https://doi.org/10.1016/j.optcom.2004.01.015
40 A Divetia, T H Hsieh, J Zhang, Z Chen, M Bachman, G P Li. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902
https://doi.org/10.1063/1.1879096
41 V X D Yang, N Munce, J Pekar, M L Gordon, S Lo, N E Marcon, B C Wilson, I A Vitkin. Micromachined array tip for multifocus fiber-based optical coherence tomography. Optics Letters, 2004, 29(15): 1754–1756
https://doi.org/10.1364/OL.29.001754 pmid: 15352360
42 A Dubois, O Levecq, H Azimani, A Davis, J Ogien, D Siret, A Barut. Line-field confocal time-domain optical coherence tomography with dynamic focusing. Optics Express, 2018, 26(26): 33534–33542
https://doi.org/10.1364/OE.26.033534 pmid: 30650800
43 A Dubois, O Levecq, H Azimani, D Siret, A Barut, M Suppa, V Del Marmol, J Malvehy, E Cinotti, P Rubegni, J L Perrot. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. Journal of Biomedical Optics, 2018, 23(10): 1–9
https://doi.org/10.1117/1.JBO.23.10.106007 pmid: 30353716
44 J Ogien, D Siret, O Levecq, H Azimani, A David, W Xue, J L Perrot, A Dubois. Line-field confocal optical coherence tomography. In: Proceedings of Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII. San Francisco: SPIE, 2019
45 A Davis, O Levecq, H Azimani, D Siret, A Dubois. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging. Biomedical Optics Express, 2019, 10(2): 694–706
https://doi.org/10.1364/BOE.10.000694 pmid: 30800509
46 A Dubois, W Xue, O Levecq, P Bulkin, A L Coutrot, J Ogien. Mirau-based line-field confocal optical coherence tomography. Optics Express, 2020, 28(6): 7918–7927
https://doi.org/10.1364/OE.389637 pmid: 32225427
47 J Ogien, O Levecq, H Azimani, A Dubois. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. Biomedical Optics Express, 2020, 11(3): 1327–1335
https://doi.org/10.1364/BOE.385303 pmid: 32206413
48 K G Larkin. Efficient nonlinear algorithm for envelope detection in white light interferometry. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 1996, 13(4): 832–843
https://doi.org/10.1364/JOSAA.13.000832
49 M Cazalas, O Levecq, H Azimani, D Siret, A Barut, M Suppa, V del Marmol, J Malvehy, E Cinotti, P Rubegni, J L Perrot, A Dubois. Skin lesion imaging with line-field confocal optical coherence tomography. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2019. San Francisco: SPIE, 2019
50 G Dejonckheere, M Suppa, V Marmol, T Meyer, E Stockfleth. The actinic dysplasia syndrome-diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC. Journal of the European Academy of Dermatology and Venereology, 2019, 33(S8): 16–20
https://doi.org/10.1111/jdv.15949 pmid: 31833608
51 M Pedrazzani, J Breugnot, P Rouaud-Tinguely, M Cazalas, A Davis, S Bordes, A Dubois, B Closs. Comparison of line-field confocal optical coherence tomography images with histological sections: validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness. Skin Research and Technology, 2020, 26(3): 398–404
https://doi.org/10.1111/srt.12815 pmid: 31799766
52 J Ogien, O Levecq, M Cazalas, M Suppa, V del Marmol, J Malvehy, E Cinotti, P Rubegni, J L Perrot, A Dubois. Handheld line-field confocal optical coherence tomography for dermatology. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2020. San Francisco: SPIE, 2020
https://doi.org/10.1117/12.2545546
53 J Monnier, L Tognetti, M Miyamoto, M Suppa, E Cinotti, M Fontaine, J Perez, C Orte Cano, O Yélamos, S Puig, A Dubois, P Rubegni, V Marmol, J Malvehy, J L Perrot. In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/jdv.16857
pmid: 32786124
54 C Ruini, E Sattler. Line-field confocal optical coherence tomography: the golden goose? Aktuelle Dermatologie, 2020, 46: 148–151
55 L Tognetti, A Rizzo, D Fiorani, E Cinotti, J L Perrot, P Rubegni. New findings in non-invasive imaging of aquagenic keratoderma: Line-field optical coherence tomography, dermoscopy and reflectance confocal microscopy. Skin Research and Technology, 2020, doi:10.1111/srt.12882
pmid: 32776375
56 C Ruini, S Schuh, E Sattler, J Welzel. Line-field confocal optical coherence tomography–practical applications in dermatology and comparison with established imaging methods. Skin Research and Technology, 2020, doi:10.1111/srt.12949
pmid: 33085784
57 L Tognetti, D Fiorani, E Cinotti, P Rubegni. Tridimensional skin imaging in aquagenic keratoderma: virtual histology by line-field confocal optical coherence tomography. International Journal of Dermatology, 2020, doi:10.1111/ijd.15169
pmid: 32860427
58 L Tognetti, D Fiorani, M Suppa, E Cinotti, M Fontaine, V D Marmol, P Rubegni, J L Perrot. Examination of circumscribed palmar hypokeratosis with line-field confocal optical coherence tomography: dermoscopic, ultrasonographic and histopathologic correlates. Indian Journal of Dermatology, Venereology and Leprology, 2020, 86(2): 206–208
https://doi.org/10.4103/ijdvl.IJDVL_546_19 pmid: 32031108
59 L Tognetti, A Carraro, A Lamberti, E Cinotti, M Suppa, J Luc Perrot, P Rubegni. Kaposi sarcoma of the glans: new findings by line field confocal optical coherence tomography examination. Skin Research and Technology, 2020, doi:10.1111/srt.12938
pmid: 32700774
60 C Ruini, S Schuh, G Pellacani, L French, J Welzel, E Sattler. In vivo imaging of Sarcoptes scabiei infestation using line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/jdv.16671
pmid: 32455490
61 D Rennie. Nailfold dermatoscopy in general practice. Australian Family Physician, 2015, 44(11): 809–812
pmid: 26590619
62 W Xue, J Ogien, O Levecq, A Dubois. Line-field confocal optical coherence tomography based on a Mirau interferometer. In: Proceedings of Unconventional Optical Imaging II. SPIE, 2020
https://doi.org/10.1117/12.2555691
[1] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[2] Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Front. Optoelectron., 2020, 13(4): 307-317.
[3] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[4] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[5] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[6] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[7] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[8] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[9] Guo HE,Bingbing LI,Sihua YANG. In vivo imaging of a single erythrocyte with high-resolution photoacoustic microscopy[J]. Front. Optoelectron., 2015, 8(2): 122-127.
[10] Jun LIU. Two-photon microscopy in pre-clinical and clinical cancer research[J]. Front. Optoelectron., 2015, 8(2): 141-151.
[11] Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Front Optoelec, 2013, 6(2): 228-233.
[12] Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Front Optoelec, 2013, 6(2): 134-145.
[13] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
[14] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
[15] Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed