|
|
Dual non-diffractive terahertz beam generators based on all-dielectric metasurface |
Chunyu LIU1, Yanfeng LI1( ), Xi FENG1,2, Xixiang ZHANG2, Jiaguang HAN1, Weili ZHANG3 |
1. Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China 2. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 3. School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA |
|
|
Abstract The applications of terahertz (THz) technology can be greatly extended using non-diffractive beams with unique field distributions and non-diffractive transmission characteristics. Here, we design and experimentally demonstrate a set of dual non-diffractive THz beam generators based on an all-dielectric metasurface. Two kinds of non-diffractive beams with dramatically opposite focusing properties, Bessel beam and abruptly autofocusing (AAF) beam, are considered. A Bessel beam with long-distance non-diffractive characteristics and an AAF beam with low energy during transmission and abruptly increased energy near the focus are generated for x- and y-polarized incident waves, respectively. These two kinds of beams are characterized and the results agree well with simulations. In addition, we show numerically that these two kinds of beams can also carry orbital angular momentum by further imposing proper angular phases in the design. We believe that these metasurface-based beam generators have great potential use in THz imaging, communications, non-destructive evaluation, and many other fields.
|
Keywords
terahertz (THz) wave
all-dielectric metasurface
Bessel beam
abruptly autofocusing (AAF) beam
vortex beam
|
Corresponding Author(s):
Yanfeng LI
|
Just Accepted Date: 17 November 2020
Online First Date: 10 December 2020
Issue Date: 14 July 2021
|
|
1 |
A G Stepanov, S Henin, Y Petit, L Bonacina, J Kasparian, J P Wolf. Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B, Lasers and Optics, 2010, 101(1–2): 11–14
https://doi.org/10.1007/s00340-010-4186-4
|
2 |
J Hebling, G Almási, I Kozma, J Kuhl. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
https://doi.org/10.1364/OE.10.001161
pmid: 19451975
|
3 |
D K Polyushkin, E Hendry, E K Stone, W L Barnes. THz generation from plasmonic nanoparticle arrays. Nano Letters, 2011, 11(11): 4718–4724
https://doi.org/10.1021/nl202428g
pmid: 22007706
|
4 |
X Lu, X C Zhang. Balanced terahertz wave air-biased-coherent-detection. Applied Physics Letters, 2011, 98(15): 151111
https://doi.org/10.1063/1.3574535
|
5 |
M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
|
6 |
B Ferguson, X C Zhang. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
https://doi.org/10.1038/nmat708
pmid: 12618844
|
7 |
X Liu, K Fan, I V Shadrivov, W J Padilla. Experimental realization of a terahertz all-dielectric metasurface absorber. Optics Express, 2017, 25(1): 191–201
https://doi.org/10.1364/OE.25.000191
pmid: 28085806
|
8 |
H T Chen, W J Padilla, J M Zide, A C Gossard, A J Taylor, R D Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
https://doi.org/10.1038/nature05343
pmid: 17136089
|
9 |
X Liu, E P J Parrott, B S Y Ung, E Pickwell-MacPherson. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light. APL Photonics, 2016, 1(7): 076103
https://doi.org/10.1063/1.4963141
|
10 |
T Löffler, T Bauer, K Siebert, H Roskos, A Fitzgerald, S Czasch. Terahertz dark-field imaging of biomedical tissue. Optics Express, 2001, 9(12): 616–621
https://doi.org/10.1364/OE.9.000616
pmid: 19424298
|
11 |
I Amenabar, F Lopez, A Mendikute. In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter and Terahertz Waves, 2013, 34(2): 152–169
https://doi.org/10.1007/s10762-012-9949-z
|
12 |
J Liu, L Mao, J Ku, H Peng, Z Lao, D Chen, B Yang. Using terahertz spectroscopy to identify transgenic cottonseed oil according to physicochemical quality parameters. Optik (Stuttgart), 2017, 142: 483–488
https://doi.org/10.1016/j.ijleo.2017.05.103
|
13 |
J F Federici, L Moeller. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 2010, 107(11): 111101
https://doi.org/10.1063/1.3386413
|
14 |
J Durnin, J Miceli Jr, J H Eberly. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
https://doi.org/10.1103/PhysRevLett.58.1499
pmid: 10034453
|
15 |
G A Siviloglou, D N Christodoulides. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
https://doi.org/10.1364/OL.32.000979
pmid: 17375174
|
16 |
N K Efremidis, D N Christodoulides. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
https://doi.org/10.1364/OL.35.004045
pmid: 21124607
|
17 |
D M Cottrell, J A Davis, T M Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636
https://doi.org/10.1364/OL.34.002634
pmid: 19724515
|
18 |
M K Bhuyan, F Courvoisier, P A Lacourt, M Jacquot, R Salut, L Furfaro, J M Dudley. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Applied Physics Letters, 2010, 97(8): 081102
https://doi.org/10.1063/1.3479419
|
19 |
P Dufour, M Piché, Y De Koninck, N McCarthy. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics, 2006, 45(36): 9246–9252
https://doi.org/10.1364/AO.45.009246
pmid: 17151766
|
20 |
J Arlt, V Garceschavez, W Sibbett, K Dholakia. Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197(4–6): 239–245
https://doi.org/10.1016/S0030-4018(01)01479-1
|
21 |
A Bitman, I Moshe, Z Zalevsky. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams. Optics Letters, 2012, 37(19): 4164–4166
https://doi.org/10.1364/OL.37.004164
pmid: 23027313
|
22 |
G Ok, S W Choi, K H Park, H S Chun. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors (Basel), 2013, 13(1): 71–85
https://doi.org/10.3390/s130100071
pmid: 23344374
|
23 |
S F Busch, G Town, M A Scheller, M Koch. Focus free terahertz reflection imaging and tomography with Bessel beams. Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(3): 318–326
https://doi.org/10.1007/s10762-014-0129-1
|
24 |
J Baumgartl, M Mazilu, K Dholakia. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678
https://doi.org/10.1038/nphoton.2008.201
|
25 |
T Vettenburg, H I Dalgarno, J Nylk, C Coll-Lladó, D E K Ferrier, T Čižmár, F J Gunn-Moore, K Dholakia. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544
https://doi.org/10.1038/nmeth.2922
pmid: 24705473
|
26 |
A Mathis, F Courvoisier, L Froehly, L Furfaro, M Jacquot, P A Lacourt, J M Dudley. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 071110
https://doi.org/10.1063/1.4745925
|
27 |
D G Papazoglou, N K Efremidis, D N Christodoulides, S Tzortzakis. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
https://doi.org/10.1364/OL.36.001842
pmid: 21593909
|
28 |
P Zhang, J Prakash, Z Zhang, M S Mills, N K Efremidis, D N Christodoulides, Z Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883–2885
https://doi.org/10.1364/OL.36.002883
pmid: 21808346
|
29 |
M Manousidaki, D Papazoglou, M Farsari, S Tzortzakis. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3(5): 525–530
https://doi.org/10.1364/OPTICA.3.000525
|
30 |
N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713
pmid: 21885733
|
31 |
A Pors, S I Bozhevolnyi. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express, 2013, 21(22): 27438–27451
https://doi.org/10.1364/OE.21.027438
pmid: 24216965
|
32 |
X Ni, N K Emani, A V Kildishev, A Boltasseva, V M Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
https://doi.org/10.1126/science.1214686
pmid: 22194414
|
33 |
Y Hu, X Luo, Y Chen, Q Liu, X Li, Y Wang, N Liu, H Duan. 3D-Integrated metasurfaces for full-colour holography. Light, Science & Applications, 2019, 8(1): 86
https://doi.org/10.1038/s41377-019-0198-y
pmid: 31645930
|
34 |
C Zhang, S Divitt, Q Fan, W Zhu, A Agrawal, Y Lu, T Xu, H J Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
https://doi.org/10.1038/s41377-020-0287-y
pmid: 32284857
|
35 |
D Wen, F Yue, M Ardron, X Chen. Multifunctional metasurface lens for imaging and Fourier transform. Scientific Reports, 2016, 6(1): 27628
https://doi.org/10.1038/srep27628
pmid: 27272601
|
36 |
Z Liu, Z Li, Z Liu, H Cheng, W Liu, C Tang, C Gu, J Li, H Chen, S Chen, J Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
https://doi.org/10.1021/acsphotonics.7b00491
|
37 |
B Wang, F Dong, H Feng, D Yang, Z Song, L Xu, W Chu, Q Gong, Y Li. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics, 2018, 5(5): 1660–1664
https://doi.org/10.1021/acsphotonics.7b01191
|
38 |
C Zhang, F Yue, D Wen, M Chen, Z Zhang, W Wang, X Chen. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
https://doi.org/10.1021/acsphotonics.7b00587
|
39 |
R Dharmavarapu, S Hock Ng, F Eftekhari, S Juodkazis, S Bhattacharya. MetaOptics: opensource software for designing metasurface optical element GDSII layouts. Optics Express, 2020, 28(3): 3505–3516
https://doi.org/10.1364/OE.384057
pmid: 32122017
|
40 |
N Mahmood, H Jeong, I Kim, M Q Mehmood, M Zubair, A Akbar, M Saleem, M S Anwar, F A Tahir, J Rho. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
https://doi.org/10.1039/C9NR04888J
pmid: 31637386
|
41 |
M R Akram, M Q Mehmood, T Tauqeer, A S Rana, I D Rukhlenko, W Zhu. Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27(7): 9467–9480
https://doi.org/10.1364/OE.27.009467
pmid: 31045098
|
42 |
W Hao, M Deng, S Chen, L Chen. High-efficiency generation of Airy beams with Huygens’ metasurface. Physical Review Applied, 2019, 11(5): 054012
https://doi.org/10.1103/PhysRevApplied.11.054012
|
43 |
B Yu, J Wen, L Chen, L Zhang, Y Fan, B Dai, S Kanwal, D Lei, D Zhang. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Research, 2020, 8(7): 1148–1154
https://doi.org/10.1364/PRJ.390202
|
44 |
Q Fan, W Zhu, Y Liang, P Huo, C Zhang, A Agrawal, K Huang, X Luo, Y Lu, C Qiu, H J Lezec, T Xu. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
https://doi.org/10.1021/acs.nanolett.8b04571
pmid: 30595022
|
45 |
F Yue, D Wen, J Xin, B D Gerardot, J Li, X Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics, 2016, 3(9): 1558–1563
https://doi.org/10.1021/acsphotonics.6b00392
|
46 |
R Dharmavarapu, K Izumi, I Katayama, S H Ng, J Vongsvivut, M J Tobin, A Kuchmizhak, Y Nishijima, S Bhattacharya, S Juodkazis. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics, 2019, 8(7): 1263–1270
https://doi.org/10.1515/nanoph-2019-0112
|
47 |
J He, T Dong, B Chi, Y Zhang. Metasurfaces for terahertz wavefront modulation: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2020, 41(6): 607–631
https://doi.org/10.1007/s10762-020-00677-3
|
48 |
J Guo, T Wang, H Zhao, X Wang, S Feng, P Han, W Sun, J Ye, G Situ, H Chen, Y Zhang. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials, 2019, 7(10): 1801696
https://doi.org/10.1002/adom.201801696
|
49 |
W Liu, B Hu, Z Huang, H Guan, H Li, X Wang, Y Zhang, H Yin, X Xiong, J Liu, Y Wang. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Research, 2018, 6(7): 703–708
https://doi.org/10.1364/PRJ.6.000703
|
50 |
H Zhao, B Quan, X Wang, C Gu, J Li, Y Zhang. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5(5): 1726–1732
https://doi.org/10.1021/acsphotonics.7b01149
|
51 |
P Genevet, F Capasso, F Aieta, M Khorasaninejad, R Devlin. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4(1): 139–152
https://doi.org/10.1364/OPTICA.4.000139
|
52 |
I Staude, J Schilling. Metamaterial-inspired silicon nanophotonics. Nature Photonics, 2017, 11(5): 274–284
https://doi.org/10.1038/nphoton.2017.39
|
53 |
A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
https://doi.org/10.1038/nnano.2015.186
pmid: 26322944
|
54 |
W T Chen, M Khorasaninejad, A Y Zhu, J Oh, R C Devlin, A Zaidi, F Capasso. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
https://doi.org/10.1038/lsa.2016.259
pmid: 30167252
|
55 |
I Chremmos, N K Efremidis, D N Christodoulides. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
https://doi.org/10.1364/OL.36.001890
pmid: 21593925
|
56 |
Z Zhao, C Xie, D Ni, Y Zhang, Y Li, F Courvoisier, M Hu. Scaling the abruptly autofocusing beams in the direct-space. Optics Express, 2017, 25(24): 30598–30605
https://doi.org/10.1364/OE.25.030598
pmid: 29221087
|
57 |
Q Wang, Q Xu, X Zhang, C Tian, Y Xu, J Gu, Z Tian, C Ouyang, X Zhang, J Han, W Zhang. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 2018, 5(2): 599–606
https://doi.org/10.1021/acsphotonics.7b01173
|
58 |
Y Xu, X Zhang, Z Tian, J Gu, C Ouyang, Y Li, J Han, W Zhang. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Applied Physics Letters, 2015, 107(2): 021105
https://doi.org/10.1063/1.4926967
|
59 |
K Ou, G Li, T Li, H Yang, F Yu, J Chen, Z Zhao, G Cao, X Chen, W Lu. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 2018, 10(40): 19154–19161
https://doi.org/10.1039/C8NR07480A
pmid: 30302479
|
60 |
Q Yang, X Chen, Q Xu, C Tian, Y Xu, L Cong, X Zhang, Y Li, C Zhang, X Zhang, J Han, W Zhang. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research, 2018, 6(11): 1056–1061
https://doi.org/10.1364/PRJ.6.001056
|
61 |
D Zhang, Z Lin, J Liu, J Zhang, Z Zhang, Z Hao, X Wang. Broadband high-efficiency multiple vortex beams generated by an interleaved geometric-phase multifunctional metasurface. Optical Materials Express, 2020, 10(7): 1531–1544
https://doi.org/10.1364/OME.10.001531
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|