Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 201-210    https://doi.org/10.1007/s12200-020-1098-8
RESEARCH ARTICLE
Dual non-diffractive terahertz beam generators based on all-dielectric metasurface
Chunyu LIU1, Yanfeng LI1(), Xi FENG1,2, Xixiang ZHANG2, Jiaguang HAN1, Weili ZHANG3
1. Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
2. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3. School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
 Download: PDF(1189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The applications of terahertz (THz) technology can be greatly extended using non-diffractive beams with unique field distributions and non-diffractive transmission characteristics. Here, we design and experimentally demonstrate a set of dual non-diffractive THz beam generators based on an all-dielectric metasurface. Two kinds of non-diffractive beams with dramatically opposite focusing properties, Bessel beam and abruptly autofocusing (AAF) beam, are considered. A Bessel beam with long-distance non-diffractive characteristics and an AAF beam with low energy during transmission and abruptly increased energy near the focus are generated for x- and y-polarized incident waves, respectively. These two kinds of beams are characterized and the results agree well with simulations. In addition, we show numerically that these two kinds of beams can also carry orbital angular momentum by further imposing proper angular phases in the design. We believe that these metasurface-based beam generators have great potential use in THz imaging, communications, non-destructive evaluation, and many other fields.

Keywords terahertz (THz) wave      all-dielectric metasurface      Bessel beam      abruptly autofocusing (AAF) beam      vortex beam     
Corresponding Author(s): Yanfeng LI   
Just Accepted Date: 17 November 2020   Online First Date: 10 December 2020    Issue Date: 14 July 2021
 Cite this article:   
Chunyu LIU,Yanfeng LI,Xi FENG, et al. Dual non-diffractive terahertz beam generators based on all-dielectric metasurface[J]. Front. Optoelectron., 2021, 14(2): 201-210.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1098-8
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/201
Fig.1  (a) Schematic of the rectangular-shaped pillar unit cell of the metasurface-based dual beam generator, which is made of silicon. The period of the square unit cell is p, the height is h, and the sides are lx and ly, respectively. (b) Scanning electron microcopy (SEM) image of the fabricated metasurface. The inset shows a zoomed portion
Fig.2  Simulated performance of the dual non-diffractive THz beam generator. (a) and (b) Simulated intensity profiles for a Bessel beam with Zmax = 6 mm in the x-z (y = 0) and x-y cross-sections (z = 4 mm), respectively, under x-polarized incidence. (c) and (d) Simulated intensity profiles for a Bessel beam with Zmax = 10 mm in the x-z (y = 0) and x-y cross-sections (z = 7 mm), respectively, under x-polarized incidence. (e) and (f) Simulated intensity profiles for the AAF beam in the x-z (y = 0) and x-y cross-sections (z = 2.5 mm), respectively, under y-polarized incidence
Fig.3  Illustration of experimental setup. 3-D TSH: three-dimensional translational sample holder; 2-D TD: two-dimensional translational detector
Fig.4  Experimental results of the dual non-diffractive THz beam generator. (a) and (b) Measured normalized intensity distributions for the Bessel beam in the x-z (y = 0) and x-y cross-sections (z = 4 mm), respectively, under x-polarized incidence. (c) and (d) Measured normalized intensity distributions for the AAF beam in the x-z (y = 0) and x-y cross-sections (z = 2.5 mm), respectively, under y-polarized incidence
Fig.5  (a) and (b) Simulated intensity profiles for AAF beams with two different focal lengths (zc = 3.5 mm and zc = 4.5 mm, respectively) in the x-z cross-section (y = 0). (c) and (d) Corresponding experimental results
Fig.6  (a) and (b) Intensity profile of the 1st-order Bessel beam (Zmax = 10 mm) in the x-z and x-y cross-sections (z = 7 mm), respectively, under x-polarized incidence. (c) and (d) Intensity profile of the 2nd-order AAF vortex beam (zc = 3.5 mm) in the x-z and x-y cross-sections (z = 3.85 mm), respectively, under y-polarized incidence
1 A G Stepanov, S Henin, Y Petit, L Bonacina, J Kasparian, J P Wolf. Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B, Lasers and Optics, 2010, 101(1–2): 11–14
https://doi.org/10.1007/s00340-010-4186-4
2 J Hebling, G Almási, I Kozma, J Kuhl. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
https://doi.org/10.1364/OE.10.001161 pmid: 19451975
3 D K Polyushkin, E Hendry, E K Stone, W L Barnes. THz generation from plasmonic nanoparticle arrays. Nano Letters, 2011, 11(11): 4718–4724
https://doi.org/10.1021/nl202428g pmid: 22007706
4 X Lu, X C Zhang. Balanced terahertz wave air-biased-coherent-detection. Applied Physics Letters, 2011, 98(15): 151111
https://doi.org/10.1063/1.3574535
5 M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
6 B Ferguson, X C Zhang. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
https://doi.org/10.1038/nmat708 pmid: 12618844
7 X Liu, K Fan, I V Shadrivov, W J Padilla. Experimental realization of a terahertz all-dielectric metasurface absorber. Optics Express, 2017, 25(1): 191–201
https://doi.org/10.1364/OE.25.000191 pmid: 28085806
8 H T Chen, W J Padilla, J M Zide, A C Gossard, A J Taylor, R D Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
https://doi.org/10.1038/nature05343 pmid: 17136089
9 X Liu, E P J Parrott, B S Y Ung, E Pickwell-MacPherson. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light. APL Photonics, 2016, 1(7): 076103
https://doi.org/10.1063/1.4963141
10 T Löffler, T Bauer, K Siebert, H Roskos, A Fitzgerald, S Czasch. Terahertz dark-field imaging of biomedical tissue. Optics Express, 2001, 9(12): 616–621
https://doi.org/10.1364/OE.9.000616 pmid: 19424298
11 I Amenabar, F Lopez, A Mendikute. In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter and Terahertz Waves, 2013, 34(2): 152–169
https://doi.org/10.1007/s10762-012-9949-z
12 J Liu, L Mao, J Ku, H Peng, Z Lao, D Chen, B Yang. Using terahertz spectroscopy to identify transgenic cottonseed oil according to physicochemical quality parameters. Optik (Stuttgart), 2017, 142: 483–488
https://doi.org/10.1016/j.ijleo.2017.05.103
13 J F Federici, L Moeller. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 2010, 107(11): 111101
https://doi.org/10.1063/1.3386413
14 J Durnin, J Miceli Jr, J H Eberly. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
https://doi.org/10.1103/PhysRevLett.58.1499 pmid: 10034453
15 G A Siviloglou, D N Christodoulides. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
https://doi.org/10.1364/OL.32.000979 pmid: 17375174
16 N K Efremidis, D N Christodoulides. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
https://doi.org/10.1364/OL.35.004045 pmid: 21124607
17 D M Cottrell, J A Davis, T M Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636
https://doi.org/10.1364/OL.34.002634 pmid: 19724515
18 M K Bhuyan, F Courvoisier, P A Lacourt, M Jacquot, R Salut, L Furfaro, J M Dudley. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Applied Physics Letters, 2010, 97(8): 081102
https://doi.org/10.1063/1.3479419
19 P Dufour, M Piché, Y De Koninck, N McCarthy. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics, 2006, 45(36): 9246–9252
https://doi.org/10.1364/AO.45.009246 pmid: 17151766
20 J Arlt, V Garceschavez, W Sibbett, K Dholakia. Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197(4–6): 239–245
https://doi.org/10.1016/S0030-4018(01)01479-1
21 A Bitman, I Moshe, Z Zalevsky. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams. Optics Letters, 2012, 37(19): 4164–4166
https://doi.org/10.1364/OL.37.004164 pmid: 23027313
22 G Ok, S W Choi, K H Park, H S Chun. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors (Basel), 2013, 13(1): 71–85
https://doi.org/10.3390/s130100071 pmid: 23344374
23 S F Busch, G Town, M A Scheller, M Koch. Focus free terahertz reflection imaging and tomography with Bessel beams. Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(3): 318–326
https://doi.org/10.1007/s10762-014-0129-1
24 J Baumgartl, M Mazilu, K Dholakia. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678
https://doi.org/10.1038/nphoton.2008.201
25 T Vettenburg, H I Dalgarno, J Nylk, C Coll-Lladó, D E K Ferrier, T Čižmár, F J Gunn-Moore, K Dholakia. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544
https://doi.org/10.1038/nmeth.2922 pmid: 24705473
26 A Mathis, F Courvoisier, L Froehly, L Furfaro, M Jacquot, P A Lacourt, J M Dudley. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 071110
https://doi.org/10.1063/1.4745925
27 D G Papazoglou, N K Efremidis, D N Christodoulides, S Tzortzakis. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
https://doi.org/10.1364/OL.36.001842 pmid: 21593909
28 P Zhang, J Prakash, Z Zhang, M S Mills, N K Efremidis, D N Christodoulides, Z Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883–2885
https://doi.org/10.1364/OL.36.002883 pmid: 21808346
29 M Manousidaki, D Papazoglou, M Farsari, S Tzortzakis. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3(5): 525–530
https://doi.org/10.1364/OPTICA.3.000525
30 N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
31 A Pors, S I Bozhevolnyi. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express, 2013, 21(22): 27438–27451
https://doi.org/10.1364/OE.21.027438 pmid: 24216965
32 X Ni, N K Emani, A V Kildishev, A Boltasseva, V M Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
https://doi.org/10.1126/science.1214686 pmid: 22194414
33 Y Hu, X Luo, Y Chen, Q Liu, X Li, Y Wang, N Liu, H Duan. 3D-Integrated metasurfaces for full-colour holography. Light, Science & Applications, 2019, 8(1): 86
https://doi.org/10.1038/s41377-019-0198-y pmid: 31645930
34 C Zhang, S Divitt, Q Fan, W Zhu, A Agrawal, Y Lu, T Xu, H J Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
https://doi.org/10.1038/s41377-020-0287-y pmid: 32284857
35 D Wen, F Yue, M Ardron, X Chen. Multifunctional metasurface lens for imaging and Fourier transform. Scientific Reports, 2016, 6(1): 27628
https://doi.org/10.1038/srep27628 pmid: 27272601
36 Z Liu, Z Li, Z Liu, H Cheng, W Liu, C Tang, C Gu, J Li, H Chen, S Chen, J Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
https://doi.org/10.1021/acsphotonics.7b00491
37 B Wang, F Dong, H Feng, D Yang, Z Song, L Xu, W Chu, Q Gong, Y Li. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics, 2018, 5(5): 1660–1664
https://doi.org/10.1021/acsphotonics.7b01191
38 C Zhang, F Yue, D Wen, M Chen, Z Zhang, W Wang, X Chen. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
https://doi.org/10.1021/acsphotonics.7b00587
39 R Dharmavarapu, S Hock Ng, F Eftekhari, S Juodkazis, S Bhattacharya. MetaOptics: opensource software for designing metasurface optical element GDSII layouts. Optics Express, 2020, 28(3): 3505–3516
https://doi.org/10.1364/OE.384057 pmid: 32122017
40 N Mahmood, H Jeong, I Kim, M Q Mehmood, M Zubair, A Akbar, M Saleem, M S Anwar, F A Tahir, J Rho. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
https://doi.org/10.1039/C9NR04888J pmid: 31637386
41 M R Akram, M Q Mehmood, T Tauqeer, A S Rana, I D Rukhlenko, W Zhu. Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27(7): 9467–9480
https://doi.org/10.1364/OE.27.009467 pmid: 31045098
42 W Hao, M Deng, S Chen, L Chen. High-efficiency generation of Airy beams with Huygens’ metasurface. Physical Review Applied, 2019, 11(5): 054012
https://doi.org/10.1103/PhysRevApplied.11.054012
43 B Yu, J Wen, L Chen, L Zhang, Y Fan, B Dai, S Kanwal, D Lei, D Zhang. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Research, 2020, 8(7): 1148–1154
https://doi.org/10.1364/PRJ.390202
44 Q Fan, W Zhu, Y Liang, P Huo, C Zhang, A Agrawal, K Huang, X Luo, Y Lu, C Qiu, H J Lezec, T Xu. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
https://doi.org/10.1021/acs.nanolett.8b04571 pmid: 30595022
45 F Yue, D Wen, J Xin, B D Gerardot, J Li, X Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics, 2016, 3(9): 1558–1563
https://doi.org/10.1021/acsphotonics.6b00392
46 R Dharmavarapu, K Izumi, I Katayama, S H Ng, J Vongsvivut, M J Tobin, A Kuchmizhak, Y Nishijima, S Bhattacharya, S Juodkazis. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics, 2019, 8(7): 1263–1270
https://doi.org/10.1515/nanoph-2019-0112
47 J He, T Dong, B Chi, Y Zhang. Metasurfaces for terahertz wavefront modulation: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2020, 41(6): 607–631
https://doi.org/10.1007/s10762-020-00677-3
48 J Guo, T Wang, H Zhao, X Wang, S Feng, P Han, W Sun, J Ye, G Situ, H Chen, Y Zhang. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials, 2019, 7(10): 1801696
https://doi.org/10.1002/adom.201801696
49 W Liu, B Hu, Z Huang, H Guan, H Li, X Wang, Y Zhang, H Yin, X Xiong, J Liu, Y Wang. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Research, 2018, 6(7): 703–708
https://doi.org/10.1364/PRJ.6.000703
50 H Zhao, B Quan, X Wang, C Gu, J Li, Y Zhang. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5(5): 1726–1732
https://doi.org/10.1021/acsphotonics.7b01149
51 P Genevet, F Capasso, F Aieta, M Khorasaninejad, R Devlin. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4(1): 139–152
https://doi.org/10.1364/OPTICA.4.000139
52 I Staude, J Schilling. Metamaterial-inspired silicon nanophotonics. Nature Photonics, 2017, 11(5): 274–284
https://doi.org/10.1038/nphoton.2017.39
53 A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
https://doi.org/10.1038/nnano.2015.186 pmid: 26322944
54 W T Chen, M Khorasaninejad, A Y Zhu, J Oh, R C Devlin, A Zaidi, F Capasso. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
https://doi.org/10.1038/lsa.2016.259 pmid: 30167252
55 I Chremmos, N K Efremidis, D N Christodoulides. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
https://doi.org/10.1364/OL.36.001890 pmid: 21593925
56 Z Zhao, C Xie, D Ni, Y Zhang, Y Li, F Courvoisier, M Hu. Scaling the abruptly autofocusing beams in the direct-space. Optics Express, 2017, 25(24): 30598–30605
https://doi.org/10.1364/OE.25.030598 pmid: 29221087
57 Q Wang, Q Xu, X Zhang, C Tian, Y Xu, J Gu, Z Tian, C Ouyang, X Zhang, J Han, W Zhang. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 2018, 5(2): 599–606
https://doi.org/10.1021/acsphotonics.7b01173
58 Y Xu, X Zhang, Z Tian, J Gu, C Ouyang, Y Li, J Han, W Zhang. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Applied Physics Letters, 2015, 107(2): 021105
https://doi.org/10.1063/1.4926967
59 K Ou, G Li, T Li, H Yang, F Yu, J Chen, Z Zhao, G Cao, X Chen, W Lu. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 2018, 10(40): 19154–19161
https://doi.org/10.1039/C8NR07480A pmid: 30302479
60 Q Yang, X Chen, Q Xu, C Tian, Y Xu, L Cong, X Zhang, Y Li, C Zhang, X Zhang, J Han, W Zhang. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research, 2018, 6(11): 1056–1061
https://doi.org/10.1364/PRJ.6.001056
61 D Zhang, Z Lin, J Liu, J Zhang, Z Zhang, Z Hao, X Wang. Broadband high-efficiency multiple vortex beams generated by an interleaved geometric-phase multifunctional metasurface. Optical Materials Express, 2020, 10(7): 1531–1544
https://doi.org/10.1364/OME.10.001531
[1] Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Front. Optoelectron., 2021, 14(1): 37-63.
[2] Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
[3] Jingtao XIN,Zhehai ZHOU,Xiaoping LOU,Mingli DONG,Lianqing ZHU. Transformation of Laguerre-Gaussian beam by a ring-lens[J]. Front. Optoelectron., 2017, 10(1): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed