Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 399-406    https://doi.org/10.1007/s12200-021-1134-3
RESEARCH ARTICLE
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG()
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(978 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.

Keywords fiber-based optical trap (FOT)      optical waveguides      optical apertures      metal nanophotonic structures      self-induced back-action      plasmonic optical trapping     
Corresponding Author(s): Yuanjie PANG   
Just Accepted Date: 03 March 2021   Online First Date: 12 April 2021    Issue Date: 06 December 2021
 Cite this article:   
Yuanhao LOU,Xiongjie NING,Bei WU, et al. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide[J]. Front. Optoelectron., 2021, 14(4): 399-406.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1134-3
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/399
Fig.1  (a) Schematic diagram of coaxial nanowaveguide (CNWG) for optical trapping. Light propagates along the z-axis and would be scattered by the trapped nanoparticle (NP). (b)−(d) x-, y-, and z-component of electric field of the transverse electromagnetic (TEM)-like mode, respectively. (e)−(g) x-, y-, and z-component of magnetic field of TEM-like mode, respectively. The value of the z-component is magnified ten times. Large positive and negative values are shown as dark-red and dark-blue regions, respectively, whereas white areas represent regions of zero values of the field
Fig.2  Transmission intensity of (a) TEM-like and (b) LP modes, respectively, from the waveguide at different wavelengths. Inset declares the polarization direction. The blue solid line represents the transmission intensity when the trapping spot is empty, and the red dashed line represents a particle centered at 14 nm before the waveguide end-face was trapped. The results were normalized to the intensity with a trapped particle
Fig.3  Difference in localized electric field for (a) TEM and (b) LP modes, respectively. Change ratio of longitudinal Poynting vector (Pz) for (c) TEM-like and (d) LP modes, respectively. Data were obtained from the transverse plane 14 nm below the waveguide
Fig.4  Angular far-field radiation pattern in polar angle q ((a) and (b)) and azimuth angle Φ ((c) and (d)) for TEM and LP mode, respectively
Fig.5  (a) and (c) Optical force map in yz plane. (b) and (d) Depth of optical potential well in the y-direction of TEM-like and LP modes, respectively. Scatterplots demonstrate optical force magnitude normalized to the total transmitted power. The dashed black circles in (a) and (c) represents a 10-nm particle
Fig.6  (a) Schematic diagram of fiber-based CNWG traps. The dielectric fiber has a 1.1-mm-diameter core and 3-mm-diameter cladding. Their RIs were set to 1.56 and 1.46, respectively. (b) and (c) x- and y-component of electric field of TM mode in dielectric fiber. (d) and (e) x- and y-component of electric field in coaxial waveguide
1 A Ashkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
https://doi.org/10.1103/PhysRevLett.24.156
2 L P Ghislain, W W Webb. Scanning-force microscope based on an optical trap. Optics Letters, 1993, 18(19): 1678–1680
https://doi.org/10.1364/OL.18.001678 pmid: 19823484
3 K C Neuman, A Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491–505
https://doi.org/10.1038/nmeth.1218 pmid: 18511917
4 C Xie, M A Dinno, Y Q Li. Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters, 2002, 27(4): 249–251
https://doi.org/10.1364/OL.27.000249 pmid: 18007769
5 M J Lang, P M Fordyce, A M Engh, K C Neuman, S M Block. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods, 2004, 1(2): 133–139
https://doi.org/10.1038/nmeth714 pmid: 15782176
6 S Wheaton, R M Gelfand, R Gordon. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photonics, 2015, 9(1): 68–72
https://doi.org/10.1038/nphoton.2014.283
7 Y Shi, T Zhu, T Zhang, A Mazzulla, D P Tsai, W Ding, A Q Liu, G Cipparrone, J J Sáenz, C W Qiu. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light, Science & Applications, 2020, 9(1): 62
https://doi.org/10.1038/s41377-020-0293-0 pmid: 32337026
8 Y Shi, S Xiong, L K Chin, J Zhang, W Ser, J Wu, T Chen, Z Yang, Y Hao, B Liedberg, P H Yap, D P Tsai, C W Qiu, A Q Liu. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4(1): eaao0773
9 Y Z Shi, S Xiong, Y Zhang, L K Chin, Y Chen, J B Zhang, T H Zhang, W Ser, A Larrson, S H Lim, J H Wu, T N Chen, Z C Yang, Y L Hao, B Liedberg, P H Yap, K Wang, D P Tsai, C W Qiu, A Q Liu. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nature Communications, 2018, 9(1): 815
https://doi.org/10.1038/s41467-018-03156-5 pmid: 29483548
10 Y Shi, H Zhao, L K Chin, Y Zhang, P H Yap, W Ser, C W Qiu, A Q Liu. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Letters, 2020, 20(7): 5193–5200
https://doi.org/10.1021/acs.nanolett.0c01464 pmid: 32574502
11 P J Pauzauskie, A Radenovic, E Trepagnier, H Shroff, P Yang, J Liphardt. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 2006, 5(2): 97–101
https://doi.org/10.1038/nmat1563 pmid: 16429143
12 H Xin, Y Li, X Liu, B Li. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
https://doi.org/10.1021/nl401870d pmid: 23786313
13 A Ashkin, J M Dziedzic, J E Bjorkholm, S Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986, 11(5): 288–290
https://doi.org/10.1364/OL.11.000288 pmid: 19730608
14 T Čižmár, M Mazilu, K Dholakia. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 2010, 4(6): 388–394
https://doi.org/10.1038/nphoton.2010.85
15 O M Maragò, P H Jones, P G Gucciardi, G Volpe, A C Ferrari. Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8(11): 807–819
https://doi.org/10.1038/nnano.2013.208 pmid: 24202536
16 A Constable, J Kim, J Mervis, F Zarinetchi, M Prentiss. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
https://doi.org/10.1364/OL.18.001867 pmid: 19829431
17 Y Lou, D Wu, Y Pang. Optical trapping and manipulation using optical fibers. Advanced Fiber Materials, 2019, 1: 83–100
https://doi.org/10.1007/s42765-019-00009-8
18 K Taguchi, H Ueno, T Hiramatsu, M Ikeda. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters, 1997, 33(5): 413–414
https://doi.org/10.1049/el:19970247
19 D S Bykov, S Xie, R Zeltner, A Machnev, G K L Wong, T G Euser, P S J Russell. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light, Science & Applications, 2018, 7(1): 22
https://doi.org/10.1038/s41377-018-0015-z pmid: 30839617
20 D S Bykov, O A Schmidt, T G Euser, P S J Russell. Flying particle sensors in hollow-core photonic crystal fibre. Nature Photonics, 2015, 9(7): 461–465
https://doi.org/10.1038/nphoton.2015.94
21 I T Leite, S Turtaev, X Jiang, M Šiler, A Cuschieri, P S J Russell, T Čižmár. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photonics, 2018, 12(1): 33–39
https://doi.org/10.1038/s41566-017-0053-8
22 M Kreysing, D Ott, M J Schmidberger, O Otto, M Schürmann, E Martín-Badosa, G Whyte, J Guck, E Martin-Badosa, G Whyte, J Guck. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Communications, 2014, 5(1): 5481
https://doi.org/10.1038/ncomms6481 pmid: 25410595
23 X Tang, Y Zhang, W Su, Y Zhang, Z Liu, X Yang, J Zhang, J Yang, L Yuan. Super-low-power optical trapping of a single nanoparticle. Optics Letters, 2019, 44(21): 5165–5168
https://doi.org/10.1364/OL.44.005165 pmid: 31674957
24 Y C Li, H B Xin, H X Lei, L L Liu, Y Z Li, Y Zhang, B J Li. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
https://doi.org/10.1038/lsa.2016.176 pmid: 30167133
25 Y Li, X Liu, B Li. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light, Science & Applications, 2019, 8(1): 61
https://doi.org/10.1038/s41377-019-0168-4 pmid: 31645911
26 C Liberale, P Minzioni, F Bragheri, F De Angelis, E Di Fabrizio, I Cristiani. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
https://doi.org/10.1038/nphoton.2007.230
27 G Anastasiadi, M Leonard, L Paterson, W N Macpherson. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Optics Express, 2018, 26(3): 3557–3567
https://doi.org/10.1364/OE.26.003557 pmid: 29401883
28 H Xin, B Li. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
https://doi.org/10.1038/lsa.2014.86
29 H Xin, Y Li, D Xu, Y Zhang, C H Chen, B Li. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
https://doi.org/10.1002/smll.201603418 pmid: 28092436
30 H Deng, Y Zhang, T Yuan, X Zhang, Y Zhang, Z Liu, L Yuan. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
https://doi.org/10.1021/acsphotonics.6b01010
31 J Nylk, M V G Kristensen, M Mazilu, A K Thayil, C A Mitchell, E C Campbell, S J Powis, F J Gunn-Moore, K Dholakia. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomedical Optics Express, 2015, 6(4): 1512–1519
https://doi.org/10.1364/BOE.6.001512 pmid: 25909032
32 Y Gong, W Huang, Q F Liu, Y Wu, Y Rao, G D Peng, J Lang, K Zhang. Graded-index optical fiber tweezers with long manipulation length. Optics Express, 2014, 22(21): 25267–25276
https://doi.org/10.1364/OE.22.025267 pmid: 25401560
33 R Kasztelanic, A Filipkowski, A Anuszkiewicz, P Stafiej, G Stepniewski, D Pysz, K Krzyzak, R Stepien, M Klimczak, R Buczynski. Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems. Scientific Reports, 2018, 8(1): 5072
https://doi.org/10.1038/s41598-018-23464-6 pmid: 29568035
34 M L Juan, M Righini, R Quidant. Plasmon nano-optical tweezers. Nature Photonics, 2011, 5(6): 349–356
https://doi.org/10.1038/nphoton.2011.56
35 S J Yoon, J Lee, S Han, C K Kim, C W Ahn, M K Kim, Y H Lee. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nature Communications, 2018, 9(1): 2218
https://doi.org/10.1038/s41467-018-04689-5 pmid: 29880791
36 R A Jensen, I C Huang, O Chen, J T Choy, T S Bischof, M Lončar, M G Bawendi. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics, 2016, 3(3): 423–427
https://doi.org/10.1021/acsphotonics.5b00575
37 A Alizadehkhaledi, A L Frencken, F C J M van Veggel, R Gordon. Isolating nanocrystals with an individual erbium emitter: A route to a stable single-photon source at 1550 nm wavelength. Nano Letters, 2020, 20(2): 1018–1022
https://doi.org/10.1021/acs.nanolett.9b04165 pmid: 31891509
38 A Alizadehkhaledi, A L Frencken, M K Dezfouli, S Hughes, F C van Veggel, R Gordon. Cascaded plasmon-enhanced emission from a single upconverting nanocrystal. ACS Photonics, 2019, 6(5): 1125–1131
https://doi.org/10.1021/acsphotonics.9b00285
39 Y Pang, R Gordon. Optical trapping of a single protein. Nano Letters, 2012, 12(1): 402–406
22171921" target="_blank">https://doi.org/10.1021/nl203719v22171921
40 J Berthelot, S S Aćimović, M L Juan, M P Kreuzer, J Renger, R Quidant. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
https://doi.org/10.1038/nnano.2014.24 pmid: 24584272
41 R M Gelfand, S Wheaton, R Gordon. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters, 2014, 39(22): 6415–6417
https://doi.org/10.1364/OL.39.006415 pmid: 25490482
42 J M Ehtaiba, R Gordon. Template-stripped nanoaperture tweezer integrated with optical fiber. Optics Express, 2018, 26(8): 9607–9613
https://doi.org/10.1364/OE.26.009607 pmid: 29715909
43 N M Hameed, A El Eter, T Grosjean, F I Baida. Stand-alone three-dimensional optical tweezers based on fibred bowtie nanoaperture. IEEE Photonics Journal, 2014, 6(4): 1–10
https://doi.org/10.1109/JPHOT.2014.2341011
44 J Zhou, A I Chizhik, S Chu, D Jin. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579(7797): 41–50
https://doi.org/10.1038/s41586-020-2048-8 pmid: 32132689
45 R Gordon. Metal nanoapertures and single emitters. Advanced Optical Materials, 2020, 20(8): 2001110
46 P B Johnson, R W Christy. Optical constants of the noble metals. Physical review B, 1972, 6(12): 4370
https://doi.org/10.1103/PhysRevB.6.4370
47 F I Baida, A Belkhir, D Van Labeke, O Lamrous. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Physical Review B, 2006, 74(20): 205419
https://doi.org/10.1103/PhysRevB.74.205419
48 A A E Saleh, J A Dionne. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Letters, 2012, 12(11): 5581–5586
https://doi.org/10.1021/nl302627c pmid: 23035765
49 D Yoo, K L Gurunatha, H K Choi, D A Mohr, C T Ertsgaard, R Gordon, S H Oh. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Letters, 2018, 18(6): 3637–3642
https://doi.org/10.1021/acs.nanolett.8b00732 pmid: 29763566
50 A A E Saleh, S Sheikhoelislami, S Gastelum, J A Dionne. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Optics Express, 2016, 24(18): 20593–20603
https://doi.org/10.1364/OE.24.020593 pmid: 27607663
51 F Xiao, Y Ren, W Shang, W Zhu, L Han, H Lu, T Mei, M Premaratne, J Zhao. Sub-10 nm particle trapping enabled by a plasmonic dark mode. Optics Letters, 2018, 43(14): 3413–3416
https://doi.org/10.1364/OL.43.003413 pmid: 30004530
52 P C Chaumet, A Rahmani, M Nieto-Vesperinas. Optical trapping and manipulation of nano-objects with an apertureless probe. Physical Review Letters, 2002, 88(12): 123601
https://doi.org/10.1103/PhysRevLett.88.123601 pmid: 11909460
53 J T Hugall, A Singh, N F van Hulst. Plasmonic cavity coupling. ACS Photonics, 2018, 5(1): 43–53
https://doi.org/10.1021/acsphotonics.7b01139
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed