|
|
|
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide |
Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG( ) |
| School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
|
| Keywords
fiber-based optical trap (FOT)
optical waveguides
optical apertures
metal nanophotonic structures
self-induced back-action
plasmonic optical trapping
|
|
Corresponding Author(s):
Yuanjie PANG
|
|
Just Accepted Date: 03 March 2021
Online First Date: 12 April 2021
Issue Date: 06 December 2021
|
|
| 1 |
A Ashkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
https://doi.org/10.1103/PhysRevLett.24.156
|
| 2 |
L P Ghislain, W W Webb. Scanning-force microscope based on an optical trap. Optics Letters, 1993, 18(19): 1678–1680
https://doi.org/10.1364/OL.18.001678
pmid: 19823484
|
| 3 |
K C Neuman, A Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491–505
https://doi.org/10.1038/nmeth.1218
pmid: 18511917
|
| 4 |
C Xie, M A Dinno, Y Q Li. Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters, 2002, 27(4): 249–251
https://doi.org/10.1364/OL.27.000249
pmid: 18007769
|
| 5 |
M J Lang, P M Fordyce, A M Engh, K C Neuman, S M Block. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods, 2004, 1(2): 133–139
https://doi.org/10.1038/nmeth714
pmid: 15782176
|
| 6 |
S Wheaton, R M Gelfand, R Gordon. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photonics, 2015, 9(1): 68–72
https://doi.org/10.1038/nphoton.2014.283
|
| 7 |
Y Shi, T Zhu, T Zhang, A Mazzulla, D P Tsai, W Ding, A Q Liu, G Cipparrone, J J Sáenz, C W Qiu. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light, Science & Applications, 2020, 9(1): 62
https://doi.org/10.1038/s41377-020-0293-0
pmid: 32337026
|
| 8 |
Y Shi, S Xiong, L K Chin, J Zhang, W Ser, J Wu, T Chen, Z Yang, Y Hao, B Liedberg, P H Yap, D P Tsai, C W Qiu, A Q Liu. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4(1): eaao0773
|
| 9 |
Y Z Shi, S Xiong, Y Zhang, L K Chin, Y Chen, J B Zhang, T H Zhang, W Ser, A Larrson, S H Lim, J H Wu, T N Chen, Z C Yang, Y L Hao, B Liedberg, P H Yap, K Wang, D P Tsai, C W Qiu, A Q Liu. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nature Communications, 2018, 9(1): 815
https://doi.org/10.1038/s41467-018-03156-5
pmid: 29483548
|
| 10 |
Y Shi, H Zhao, L K Chin, Y Zhang, P H Yap, W Ser, C W Qiu, A Q Liu. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Letters, 2020, 20(7): 5193–5200
https://doi.org/10.1021/acs.nanolett.0c01464
pmid: 32574502
|
| 11 |
P J Pauzauskie, A Radenovic, E Trepagnier, H Shroff, P Yang, J Liphardt. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 2006, 5(2): 97–101
https://doi.org/10.1038/nmat1563
pmid: 16429143
|
| 12 |
H Xin, Y Li, X Liu, B Li. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
https://doi.org/10.1021/nl401870d
pmid: 23786313
|
| 13 |
A Ashkin, J M Dziedzic, J E Bjorkholm, S Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986, 11(5): 288–290
https://doi.org/10.1364/OL.11.000288
pmid: 19730608
|
| 14 |
T Čižmár, M Mazilu, K Dholakia. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 2010, 4(6): 388–394
https://doi.org/10.1038/nphoton.2010.85
|
| 15 |
O M Maragò, P H Jones, P G Gucciardi, G Volpe, A C Ferrari. Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8(11): 807–819
https://doi.org/10.1038/nnano.2013.208
pmid: 24202536
|
| 16 |
A Constable, J Kim, J Mervis, F Zarinetchi, M Prentiss. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
https://doi.org/10.1364/OL.18.001867
pmid: 19829431
|
| 17 |
Y Lou, D Wu, Y Pang. Optical trapping and manipulation using optical fibers. Advanced Fiber Materials, 2019, 1: 83–100
https://doi.org/10.1007/s42765-019-00009-8
|
| 18 |
K Taguchi, H Ueno, T Hiramatsu, M Ikeda. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters, 1997, 33(5): 413–414
https://doi.org/10.1049/el:19970247
|
| 19 |
D S Bykov, S Xie, R Zeltner, A Machnev, G K L Wong, T G Euser, P S J Russell. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light, Science & Applications, 2018, 7(1): 22
https://doi.org/10.1038/s41377-018-0015-z
pmid: 30839617
|
| 20 |
D S Bykov, O A Schmidt, T G Euser, P S J Russell. Flying particle sensors in hollow-core photonic crystal fibre. Nature Photonics, 2015, 9(7): 461–465
https://doi.org/10.1038/nphoton.2015.94
|
| 21 |
I T Leite, S Turtaev, X Jiang, M Šiler, A Cuschieri, P S J Russell, T Čižmár. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photonics, 2018, 12(1): 33–39
https://doi.org/10.1038/s41566-017-0053-8
|
| 22 |
M Kreysing, D Ott, M J Schmidberger, O Otto, M Schürmann, E Martín-Badosa, G Whyte, J Guck, E Martin-Badosa, G Whyte, J Guck. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Communications, 2014, 5(1): 5481
https://doi.org/10.1038/ncomms6481
pmid: 25410595
|
| 23 |
X Tang, Y Zhang, W Su, Y Zhang, Z Liu, X Yang, J Zhang, J Yang, L Yuan. Super-low-power optical trapping of a single nanoparticle. Optics Letters, 2019, 44(21): 5165–5168
https://doi.org/10.1364/OL.44.005165
pmid: 31674957
|
| 24 |
Y C Li, H B Xin, H X Lei, L L Liu, Y Z Li, Y Zhang, B J Li. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
https://doi.org/10.1038/lsa.2016.176
pmid: 30167133
|
| 25 |
Y Li, X Liu, B Li. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light, Science & Applications, 2019, 8(1): 61
https://doi.org/10.1038/s41377-019-0168-4
pmid: 31645911
|
| 26 |
C Liberale, P Minzioni, F Bragheri, F De Angelis, E Di Fabrizio, I Cristiani. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
https://doi.org/10.1038/nphoton.2007.230
|
| 27 |
G Anastasiadi, M Leonard, L Paterson, W N Macpherson. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Optics Express, 2018, 26(3): 3557–3567
https://doi.org/10.1364/OE.26.003557
pmid: 29401883
|
| 28 |
H Xin, B Li. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
https://doi.org/10.1038/lsa.2014.86
|
| 29 |
H Xin, Y Li, D Xu, Y Zhang, C H Chen, B Li. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
https://doi.org/10.1002/smll.201603418
pmid: 28092436
|
| 30 |
H Deng, Y Zhang, T Yuan, X Zhang, Y Zhang, Z Liu, L Yuan. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
https://doi.org/10.1021/acsphotonics.6b01010
|
| 31 |
J Nylk, M V G Kristensen, M Mazilu, A K Thayil, C A Mitchell, E C Campbell, S J Powis, F J Gunn-Moore, K Dholakia. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomedical Optics Express, 2015, 6(4): 1512–1519
https://doi.org/10.1364/BOE.6.001512
pmid: 25909032
|
| 32 |
Y Gong, W Huang, Q F Liu, Y Wu, Y Rao, G D Peng, J Lang, K Zhang. Graded-index optical fiber tweezers with long manipulation length. Optics Express, 2014, 22(21): 25267–25276
https://doi.org/10.1364/OE.22.025267
pmid: 25401560
|
| 33 |
R Kasztelanic, A Filipkowski, A Anuszkiewicz, P Stafiej, G Stepniewski, D Pysz, K Krzyzak, R Stepien, M Klimczak, R Buczynski. Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems. Scientific Reports, 2018, 8(1): 5072
https://doi.org/10.1038/s41598-018-23464-6
pmid: 29568035
|
| 34 |
M L Juan, M Righini, R Quidant. Plasmon nano-optical tweezers. Nature Photonics, 2011, 5(6): 349–356
https://doi.org/10.1038/nphoton.2011.56
|
| 35 |
S J Yoon, J Lee, S Han, C K Kim, C W Ahn, M K Kim, Y H Lee. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nature Communications, 2018, 9(1): 2218
https://doi.org/10.1038/s41467-018-04689-5
pmid: 29880791
|
| 36 |
R A Jensen, I C Huang, O Chen, J T Choy, T S Bischof, M Lončar, M G Bawendi. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics, 2016, 3(3): 423–427
https://doi.org/10.1021/acsphotonics.5b00575
|
| 37 |
A Alizadehkhaledi, A L Frencken, F C J M van Veggel, R Gordon. Isolating nanocrystals with an individual erbium emitter: A route to a stable single-photon source at 1550 nm wavelength. Nano Letters, 2020, 20(2): 1018–1022
https://doi.org/10.1021/acs.nanolett.9b04165
pmid: 31891509
|
| 38 |
A Alizadehkhaledi, A L Frencken, M K Dezfouli, S Hughes, F C van Veggel, R Gordon. Cascaded plasmon-enhanced emission from a single upconverting nanocrystal. ACS Photonics, 2019, 6(5): 1125–1131
https://doi.org/10.1021/acsphotonics.9b00285
|
| 39 |
Y Pang, R Gordon. Optical trapping of a single protein. Nano Letters, 2012, 12(1): 402–406
22171921" target="_blank">https://doi.org/10.1021/nl203719v22171921
|
| 40 |
J Berthelot, S S Aćimović, M L Juan, M P Kreuzer, J Renger, R Quidant. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
https://doi.org/10.1038/nnano.2014.24
pmid: 24584272
|
| 41 |
R M Gelfand, S Wheaton, R Gordon. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters, 2014, 39(22): 6415–6417
https://doi.org/10.1364/OL.39.006415
pmid: 25490482
|
| 42 |
J M Ehtaiba, R Gordon. Template-stripped nanoaperture tweezer integrated with optical fiber. Optics Express, 2018, 26(8): 9607–9613
https://doi.org/10.1364/OE.26.009607
pmid: 29715909
|
| 43 |
N M Hameed, A El Eter, T Grosjean, F I Baida. Stand-alone three-dimensional optical tweezers based on fibred bowtie nanoaperture. IEEE Photonics Journal, 2014, 6(4): 1–10
https://doi.org/10.1109/JPHOT.2014.2341011
|
| 44 |
J Zhou, A I Chizhik, S Chu, D Jin. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579(7797): 41–50
https://doi.org/10.1038/s41586-020-2048-8
pmid: 32132689
|
| 45 |
R Gordon. Metal nanoapertures and single emitters. Advanced Optical Materials, 2020, 20(8): 2001110
|
| 46 |
P B Johnson, R W Christy. Optical constants of the noble metals. Physical review B, 1972, 6(12): 4370
https://doi.org/10.1103/PhysRevB.6.4370
|
| 47 |
F I Baida, A Belkhir, D Van Labeke, O Lamrous. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Physical Review B, 2006, 74(20): 205419
https://doi.org/10.1103/PhysRevB.74.205419
|
| 48 |
A A E Saleh, J A Dionne. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Letters, 2012, 12(11): 5581–5586
https://doi.org/10.1021/nl302627c
pmid: 23035765
|
| 49 |
D Yoo, K L Gurunatha, H K Choi, D A Mohr, C T Ertsgaard, R Gordon, S H Oh. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Letters, 2018, 18(6): 3637–3642
https://doi.org/10.1021/acs.nanolett.8b00732
pmid: 29763566
|
| 50 |
A A E Saleh, S Sheikhoelislami, S Gastelum, J A Dionne. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Optics Express, 2016, 24(18): 20593–20603
https://doi.org/10.1364/OE.24.020593
pmid: 27607663
|
| 51 |
F Xiao, Y Ren, W Shang, W Zhu, L Han, H Lu, T Mei, M Premaratne, J Zhao. Sub-10 nm particle trapping enabled by a plasmonic dark mode. Optics Letters, 2018, 43(14): 3413–3416
https://doi.org/10.1364/OL.43.003413
pmid: 30004530
|
| 52 |
P C Chaumet, A Rahmani, M Nieto-Vesperinas. Optical trapping and manipulation of nano-objects with an apertureless probe. Physical Review Letters, 2002, 88(12): 123601
https://doi.org/10.1103/PhysRevLett.88.123601
pmid: 11909460
|
| 53 |
J T Hugall, A Singh, N F van Hulst. Plasmonic cavity coupling. ACS Photonics, 2018, 5(1): 43–53
https://doi.org/10.1021/acsphotonics.7b01139
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|