|
|
PTX-symmetric metasurfaces for sensing applications |
Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN( ) |
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA |
|
|
Abstract In this paper, we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling (PTX)-symmetric non-Hermitian metasurfaces, which leverage exotic singularities, such as the exceptional point (EP) and the coherent perfect absorber-laser (CPAL) point, to significantly enhance the sensitivity and detectability of photonic sensors. We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric, unbalanced gain-loss profile. The PTX-symmetric metasurfaces can exhibit similar scattering properties as their PT-symmetric counterparts at singular points, while achieving a higher sensitivity and a larger modulation depth, possible with the reciprocal-scaling factor (i.e., X transformation). Specifically, with the optimal reciprocal-scaling factor or near-zero phase offset, the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth, thus paving a promising route toward the detection of small-scale perturbations caused by, for example, molecular, gaseous, and biochemical surface adsorbates.
|
Keywords
parity-time symmetry
exceptional point (EP)
laser oscillator
coherent perfect absorber
electromagnetic sensor
radio frequency (RF) and microwave sensing
optical sensing
|
Corresponding Author(s):
Pai-Yen CHEN
|
Just Accepted Date: 16 March 2021
Online First Date: 15 April 2021
Issue Date: 14 July 2021
|
|
1 |
S Rodriguez, S Ollmar, M Waqar, A Rusu. A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(3): 533–544
https://doi.org/10.1109/TBCAS.2015.2456242
pmid: 26372646
|
2 |
M Yvanoff, J Venkataraman. A feasibility study of tissue characterization using LC sensors. IEEE Transactions on Antennas and Propagation, 2009, 57(4): 885–893
https://doi.org/10.1109/TAP.2009.2016073
|
3 |
Q Tan, T Luo, J Xiong, H Kang, X Ji, Y Zhang, M Yang, X Wang, C Xue, J Liu, W Zhang. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology. Sensors (Basel, Switzerland), 2014, 14(3): 4154–4166
https://doi.org/10.3390/s140304154
pmid: 24594610
|
4 |
H Huang, P Y Chen, C H Hung, R Gharpurey, D Akinwande. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring. Scientific Reports, 2016, 6(1): 18795
https://doi.org/10.1038/srep18795
pmid: 26732251
|
5 |
L Y Chen, B C K Tee, A L Chortos, G Schwartz, V Tse, D J Lipomi, H S Wong, M V McConnell, Z Bao. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5(1): 5028
https://doi.org/10.1038/ncomms6028
pmid: 25284074
|
6 |
P Chen, D C Rodger, S Saati, M S Humayun, Y Tai. Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. Journal of Microelectromechanical Systems, 2008, 17(6): 1342–1351
https://doi.org/10.1109/JMEMS.2008.2004945
|
7 |
P Chen, S Saati, R Varma, M S Humayun, Y Tai. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelectromechanical Systems, 2010, 19(4): 721–734
https://doi.org/10.1109/JMEMS.2010.2049825
|
8 |
R Nopper, R Niekrawietz, L Reindl. Wireless readout of passive LC sensors. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2450–2457
https://doi.org/10.1109/TIM.2009.2032966
|
9 |
J M Lopez-Higuera, L R Cobo, A Q Incera, A Cobo. Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology, 2011, 29(4): 587–608
https://doi.org/10.1109/JLT.2011.2106479
|
10 |
B H Lee, Y H Kim, K S Park, J B Eom, M J Kim, B S Rho, H Y Choi. Interferometric fiber optic sensors. Sensors (Basel, Switzerland), 2012, 12(3): 2467–2486
https://doi.org/10.3390/s120302467
pmid: 22736961
|
11 |
L Liao, H B Lu, J C Li, C Liu, D J Fu, Y L Liu. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Applied Physics Letters, 2007, 91: 173110
|
12 |
A K Wanekaya, W Chen, N V Myung, A Mulchandani. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18(6): 533–550
https://doi.org/10.1002/elan.200503449
|
13 |
G Zhu, W Q Yang, T Zhang, Q Jing, J Chen, Y S Zhou, P Bai, Z L Wang. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213
https://doi.org/10.1021/nl5005652
pmid: 24839864
|
14 |
Z Xiao, H Li, T Kottos, A Alù. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Physical Review Letters, 2019, 123(21): 213901
https://doi.org/10.1103/PhysRevLett.123.213901
pmid: 31809159
|
15 |
P Y Chen, R El-Ganainy. Exceptional points enhance wireless readout. Nature Electronics, 2019, 2(8): 323–324
https://doi.org/10.1038/s41928-019-0293-3
|
16 |
H Hodaei, A U Hassan, S Wittek, H Garcia-Gracia, R El-Ganainy, D N Christodoulides, M Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187–191
https://doi.org/10.1038/nature23280
pmid: 28796201
|
17 |
P Y Chen, M Sakhdari, M Hajizadegan, Q Cui, M M C Cheng, R El-Ganainy, A Alù. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nature Electronics, 2018, 1(5): 297–304
https://doi.org/10.1038/s41928-018-0072-6
|
18 |
Z Dong, Z Li, F Yang, C W Qiu, J S Ho. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2(8): 335–342
https://doi.org/10.1038/s41928-019-0284-4
|
19 |
M Sakhdari, N M Estakhri, H Bagci, P Y Chen. Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures. Physical Review Applied, 2018, 10(2): 024030
https://doi.org/10.1103/PhysRevApplied.10.024030
|
20 |
M Farhat, M Yang, Z Ye, P Y Chen. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photonics, 2020, 7(8): 2080–2088
https://doi.org/10.1021/acsphotonics.0c00514
|
21 |
M Yang, Z Ye, M Farhat, P Y Chen. Enhanced radio-frequency sensors based on a self-dual emitter-absorber. Physical Review Applied, 2021, 15(1): 014026
https://doi.org/10.1103/PhysRevApplied.15.014026
|
22 |
C M Bender, S Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 1998, 80(24): 5243–5246
https://doi.org/10.1103/PhysRevLett.80.5243
|
23 |
M Sakhdari, M Hajizadegan, Q Zhong, D N Christodoulides, R El-Ganainy, P Y Chen. Experimental observation of PT symmetry breaking near divergent exceptional points. Physical Review Letters, 2019, 123(19): 193901
https://doi.org/10.1103/PhysRevLett.123.193901
pmid: 31765193
|
24 |
W Chen, Ş Kaya Özdemir, G Zhao, J Wiersig, L Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192–196 PMID:28796206
https://doi.org/10.1038/nature23281
|
25 |
S Longhi. PT-symmetric laser absorber. Physical Review A, 2010, 82(3): 031801
https://doi.org/10.1103/PhysRevA.82.031801
|
26 |
Z Ye, M Farhat, P Y Chen. Tunability and switching of Fano and Lorentz resonances in PTX-symmetric electronic systems. Applied Physics Letters, 2020, 117(3): 031101
https://doi.org/10.1063/5.0014919
|
27 |
P Y Chen, J Jung. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Physical Review Applied, 2016, 5(6): 064018
https://doi.org/10.1103/PhysRevApplied.5.064018
|
28 |
M Sakhdari, M Farhat, P Y Chen. PT-symmetric metasurfaces: wave manipulation and sensing using singular points. New Journal of Physics, 2017, 19(6): 065002
https://doi.org/10.1088/1367-2630/aa6bb9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|