|
|
Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces |
Yingcheng QIU1, Shiwei TANG1( ), Tong CAI2, Hexiu XU2, Fei DING3( ) |
1. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China 2. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China 3. Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark |
|
|
Abstract Manipulating circularly polarized (CP) electromagnetic (EM) waves at will is significantly important for a wide range of applications ranging from chiral-molecule manipulations to optical communication. However, conventional EM devices based on natural materials suffer from limited functionalities, bulky configurations, and low efficiencies. Recently, Pancharatnam–Berry (PB) phase metasurfaces have shown excellent capabilities in controlling CP waves in different frequency domains, thereby allowing for multi-functional PB meta-devices that integrate distinct functionalities into single and flat devices. Nevertheless, the PB phase has intrinsically opposite signs for two spins, resulting in locked and mirrored functionalities for right CP and left CP beams. Here we review the fundamentals and applications of spin-decoupled metasurfaces that release the spin-locked limitation of PB metasurfaces by combining the orientation-dependent PB phase and the dimension-dependent propagation phase. This provides a general and practical guideline toward realizing spin-decoupled functionalities with a single metasurface for orthogonal circular polarizations. Finally, we conclude this review with a short conclusion and personal outlook on the future directions of this rapidly growing research area, hoping to stimulate new research outputs that can be useful in future applications.
|
Keywords
spin-decoupled
Pancharatnam–Berry (PB) metasurfaces
|
Corresponding Author(s):
Shiwei TANG,Fei DING
|
Just Accepted Date: 25 May 2021
Online First Date: 11 June 2021
Issue Date: 14 July 2021
|
|
1 |
T Cai, G Wang, S Tang, H Xu, J Duan, H Guo, F Guan, S Sun, Q He, L Zhou. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Physical Review Applied, 2017, 8(3): 034033
https://doi.org/10.1103/PhysRevApplied.8.034033
|
2 |
T Cai, S Tang, G Wang, H Xu, S Sun, Q He, L Zhou. High-performance bifunctional metasurfaces in transmission and reflection geometries. Advanced Optical Materials, 2017, 5(2): 1600506
https://doi.org/10.1002/adom.201600506
|
3 |
A Díaz-Rubio, V S Asadchy, A Elsakka, S A Tretyakov. From the generalized reflection law to the realization of perfect anomalous reflectors. Science Advances, 2017, 3(8): e1602714
https://doi.org/10.1126/sciadv.1602714
pmid: 28819642
|
4 |
M Khorasaninejad, W T Chen, R C Devlin, J Oh, A Y Zhu, F Capasso. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
https://doi.org/10.1126/science.aaf6644
pmid: 27257251
|
5 |
G Moreno, A B Yakovlev, H M Bernety, D H Werner, H Xin, A Monti, F Bilotti, A Alu. Wideband elliptical metasurface cloaks in printed antenna technology. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3512–3525
https://doi.org/10.1109/TAP.2018.2829809
|
6 |
B Sima, K Chen, X Luo, J Zhao, Y Feng. Combining frequency-selective scattering and specular reflection through phase-dispersion tailoring of a metasurface. Physical Review Applied, 2018, 10(6): 064043
https://doi.org/10.1103/PhysRevApplied.10.064043
|
7 |
K Liu, W Guo, G Wang, H Li, G Liu. A novel broadband bi-functional metasurface for vortex generation and simultaneous RCS reduction. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 63999–64007
https://doi.org/10.1109/ACCESS.2018.2877745
|
8 |
Y Zhang, W Liu, J Gao, X Yang. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials, 2018, 6(4): 1701228
https://doi.org/10.1002/adom.201701228
|
9 |
T Cai, G Wang, X Zhang, J Liang, Y Zhuang, D Liu, H Xu. Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5629–5636
https://doi.org/10.1109/TAP.2015.2496115
|
10 |
C Pfeiffer, C Zhang, V Ray, L J Guo, A Grbic. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
https://doi.org/10.1103/PhysRevLett.113.023902
pmid: 25062183
|
11 |
X Ni, N K Emani, A V Kildishev, A Boltasseva, V M Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
https://doi.org/10.1126/science.1214686
pmid: 22194414
|
12 |
N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713
pmid: 21885733
|
13 |
M R Akram, M Q Mehmood, X Bai, R Jin, M Premaratne, W Zhu. High efficiency ultrathin transmissive metasurfaces. Advanced Optical Materials, 2019, 7(11): 1801628
https://doi.org/10.1002/adom.201801628
|
14 |
R C Devlin, A Ambrosio, N A Rubin, J P B Mueller, F Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 2017, 358(6365): 896–901
https://doi.org/10.1126/science.aao5392
pmid: 29097490
|
15 |
G Ding, K Chen, X Luo, J Zhao, T Jiang, Y Feng. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Physical Review Applied, 2019, 11(4): 044043
https://doi.org/10.1103/PhysRevApplied.11.044043
|
16 |
A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009
https://doi.org/10.1126/science.1232009
pmid: 23493714
|
17 |
N Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
https://doi.org/10.1038/nmat3839
pmid: 24452357
|
18 |
D Lin, P Fan, E Hasman, M L Brongersma. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
https://doi.org/10.1126/science.1253213
pmid: 25035488
|
19 |
F Ding, R Deshpande, S I Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light, Science & Applications, 2018, 7(4): 17178
https://doi.org/10.1038/lsa.2017.178
pmid: 30839542
|
20 |
S Boroviks, R A Deshpande, N A Mortensen, S I Bozhevolnyi. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 2018, 5(5): 1648–1653
https://doi.org/10.1021/acsphotonics.7b01091
|
21 |
H X Xu, S Tang, X Ling, W Luo, L Zhou. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking. Annalen der Physik, 2017, 529(5): 1700045
https://doi.org/10.1002/andp.201700045
|
22 |
H Xu, S Tang, G Wang, T Cai, W Huang, Q He, S Sun, L Zhou. Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682
https://doi.org/10.1109/TAP.2016.2565742
|
23 |
S Liu, T Jun Cui, A Noor, Z Tao, H C Zhang, G Bai, Y Yang, X Yang Zhou. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light, Science & Applications, 2018, 7(5): 18008
https://doi.org/10.1038/lsa.2018.8
pmid: 30839515
|
24 |
L Huang, H Mühlenbernd, X Li, X Song, B Bai, Y Wang, T Zentgraf. Broadband hybrid holographic multiplexing with geometric metasurfaces. Advanced Materials, 2015, 27(41): 6444–6449
https://doi.org/10.1002/adma.201502541
pmid: 26398589
|
25 |
J P Balthasar Mueller, N A Rubin, R C Devlin, B Groever, F Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
https://doi.org/10.1103/PhysRevLett.118.113901
pmid: 28368630
|
26 |
S Xiao, F Zhong, H Liu, S Zhu, J Li. Flexible coherent control of plasmonic spin-Hall effect. Nature Communications, 2015, 6(1): 8360
https://doi.org/10.1038/ncomms9360
pmid: 26415636
|
27 |
S Choudhury, U Guler, A Shaltout, V M Shalaev, A V Kildishev, A Boltasseva. Pancharatnam–Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Advanced Optical Materials, 2017, 5(10): 1700196
https://doi.org/10.1002/adom.201700196
|
28 |
S Wang, X Wang, Q Kan, J Ye, S Feng, W Sun, P Han, S Qu, Y Zhang. Spin-selected focusing and imaging based on metasurface lens. Optics Express, 2015, 23(20): 26434–26441
https://doi.org/10.1364/OE.23.026434
pmid: 26480156
|
29 |
E Maguid, I Yulevich, M Yannai, V Kleiner, M L Brongersma, E Hasman. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light, Science & Applications, 2017, 6(8): e17027
https://doi.org/10.1038/lsa.2017.27
pmid: 30167279
|
30 |
D Wen, S Chen, F Yue, K Chan, M Chen, M Ardron, K F Li, P W H Wong, K W Cheah, E Y B Pun, G Li, S Zhang, X Chen. Metasurface device with helicity-dependent functionality. Advanced Optical Materials, 2016, 4(2): 321–327
https://doi.org/10.1002/adom.201500498
|
31 |
W Luo, S Xiao, Q He, S Sun, L Zhou. Photonic spin Hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108
https://doi.org/10.1002/adom.201500068
|
32 |
M Khorasaninejad, K B Crozier. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nature Communications, 2014, 5(1): 5386
https://doi.org/10.1038/ncomms6386
pmid: 25388102
|
33 |
L Huang, X Chen, B Bai, Q Tan, G Jin, T Zentgraf, S Zhang. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light, Science & Applications, 2013, 2(3): e70
https://doi.org/10.1038/lsa.2013.26
|
34 |
Q Jiang, Y Bao, F Lin, X Zhu, S Zhang, Z Fang. Spin-controlled integrated near-and far-field optical launcher. Advanced Functional Materials, 2018, 28(8): 1705503
https://doi.org/10.1002/adfm.201705503
|
35 |
J Jin, X Li, Y Guo, M Pu, P Gao, X Ma, X Luo. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale, 2019, 11(9): 3952–3957
https://doi.org/10.1039/C8NR09383K
pmid: 30762856
|
36 |
E Maguid, I Yulevich, D Veksler, V Kleiner, M L Brongersma, E Hasman. Photonic spin-controlled multi-functional shared-aperture antenna array. Science, 2016, 352(6290): 1202–1206
https://doi.org/10.1126/science.aaf3417
pmid: 27103668
|
37 |
D Veksler, E Maguid, N Shitrit, D Ozeri, V Kleiner, E Hasman. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics, 2015, 2(5): 661–667
https://doi.org/10.1021/acsphotonics.5b00113
|
38 |
M Q Mehmood, S Mei, S Hussain, K Huang, S Y Siew, L Zhang, T Zhang, X Ling, H Liu, J Teng, A Danner, S Zhang, C W Qiu. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Advanced Materials, 2016, 28(13): 2533–2539
https://doi.org/10.1002/adma.201504532
pmid: 26833667
|
39 |
F Ding, Z Wang, S He, V M Shalaev, A V Kildishev. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 2015, 9(4): 4111–4119
https://doi.org/10.1021/acsnano.5b00218
pmid: 25790895
|
40 |
C Zhang, S Divitt, Q Fan, W Zhu, A Agrawal, Y Lu, T Xu, H J Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
https://doi.org/10.1038/s41377-020-0287-y
pmid: 33833220
|
41 |
Y Yuan, K Zhang, B Ratni, Q Song, X Ding, Q Wu, S N Burokur, P Genevet. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nature Communications, 2020, 11(1): 4186
https://doi.org/10.1038/s41467-020-17773-6
pmid: 32826879
|
42 |
S Tian, H Guo, J Hu, S Zhuang. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688
https://doi.org/10.1364/OE.27.000680
pmid: 30696150
|
43 |
R Jin, L Tang, J Li, J Wang, Q Wang, Y Liu, Z Dong. Experimental demonstration of multidimensional and multi-functional metalenses based on photonic spin hall effect. ACS Photonics, 2020, 7(2): 512–518
https://doi.org/10.1021/acsphotonics.9b01608
|
44 |
X Li, S Li, G Wang, Y Lei, Y Hong, L Zhang, C Zeng, L Wang, Q Sun, W Zhang. Tunable doublet lens based on dielectric metasurface using phase-change material. Modern Physics Letters B, 2020, 34(28): 2050313
https://doi.org/10.1142/S0217984920503133
|
45 |
H Xu, L Han, Y Li, Y Sun, J Zhao, S Zhang, C Qiu. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photonics, 2019, 6(1): 211–220
https://doi.org/10.1021/acsphotonics.8b01439
|
46 |
Q Fan, W Zhu, Y Liang, P Huo, C Zhang, A Agrawal, K Huang, X Luo, Y Lu, C Qiu, H J Lezec, T Xu. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
https://doi.org/10.1021/acs.nanolett.8b04571
pmid: 30595022
|
47 |
S Pancharatnam. Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences-Section A. Beilin: Springer, 1956, 398–417
|
48 |
M V Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1802, 1984(392): 45–57
|
49 |
Z Bomzon, G Biener, V Kleiner, E Hasman. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
https://doi.org/10.1364/OL.27.001141
pmid: 18026387
|
50 |
C Menzel, C Rockstuhl, F Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Physical Review A, 2010, 82(5): 053811
https://doi.org/10.1103/PhysRevA.82.053811
|
51 |
N P Armitage. Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries. Physical Review. B, 2014, 90(3): 035135
https://doi.org/10.1103/PhysRevB.90.035135
|
52 |
A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
https://doi.org/10.1038/nnano.2015.186
pmid: 26322944
|
53 |
L Huang, X Chen, H Mühlenbernd, G Li, B Bai, Q Tan, G Jin, T Zentgraf, S Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750–5755
https://doi.org/10.1021/nl303031j
pmid: 23062196
|
54 |
H Xu, S Ma, X Ling, X Zhang, S Tang, T Cai, S Sun, Q He, L Zhou. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics, 2018, 5(5): 1691–1702
https://doi.org/10.1021/acsphotonics.7b01036
|
55 |
X Chen, L Huang, H Mühlenbernd, G Li, B Bai, Q Tan, G Jin, C W Qiu, T Zentgraf, S Zhang. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Optical Materials, 2013, 1(7): 517–521
https://doi.org/10.1002/adom.201300102
|
56 |
Z Zhao, M Pu, H Gao, J Jin, X Li, X Ma, Y Wang, P Gao, X Luo. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5(1): 15781
https://doi.org/10.1038/srep15781
pmid: 26503607
|
57 |
F Yue, D Wen, C Zhang, B D Gerardot, W Wang, S Zhang, X Chen. Multichannel polarization-controllable superpositions of orbital angular momentum states. Advanced Materials, 2017, 29(15): 1603838
https://doi.org/10.1002/adma.201603838
pmid: 28207164
|
58 |
P Chen, S Ge, W Duan, B Wei, G Cui, W Hu, Y Lu. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding. ACS Photonics, 2017, 4(6): 1333–1338
https://doi.org/10.1021/acsphotonics.7b00263
|
59 |
D Wen, F Yue, W Liu, S Chen, X Chen. Geometric metasurfaces for ultrathin optical devices. Advanced Optical Materials, 2018, 6(17): 1800348
https://doi.org/10.1002/adom.201800348
|
60 |
H Gao, Y Li, L Chen, J Jin, M Pu, X Li, P Gao, C Wang, X Luo, M Hong. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale, 2018, 10(2): 666–671
https://doi.org/10.1039/C7NR07873K
pmid: 29239455
|
61 |
Y Li, X Li, L Chen, M Pu, J Jin, M Hong, X Luo. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Advanced Optical Materials, 2017, 5(2): 1600502
https://doi.org/10.1002/adom.201600502
|
62 |
K Yang, M Pu, X Li, X Ma, J Luo, H Gao, X Luo. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface. Nanoscale, 2016, 8(24): 12267–12271
https://doi.org/10.1039/C5NR09209D
pmid: 27271957
|
63 |
X Ma, M Pu, X Li, C Huang, Y Wang, W Pan, B Zhao, J Cui, C Wang, Z Zhao, X Luo. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5(1): 10365
https://doi.org/10.1038/srep10365
pmid: 25988213
|
64 |
H Ren, X Li, Q Zhang, M Gu. On-chip noninterference angular momentum multiplexing of broadband light. Science, 2016, 352(6287): 805–809
https://doi.org/10.1126/science.aaf1112
pmid: 27056843
|
65 |
J Lin, J P Mueller, Q Wang, G Yuan, N Antoniou, X C Yuan, F Capasso. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 2013, 340(6130): 331–334
https://doi.org/10.1126/science.1233746
pmid: 23599488
|
66 |
J Duan, H Guo, S Dong, T Cai, W Luo, Z Liang, Q He, L Zhou, S Sun. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Scientific Reports, 2017, 7(1): 1354
https://doi.org/10.1038/s41598-017-01664-w
pmid: 28465543
|
67 |
N Shitrit, I Bretner, Y Gorodetski, V Kleiner, E Hasman. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
https://doi.org/10.1021/nl2004835
pmid: 21513279
|
68 |
G Zheng, H Mühlenbernd, M Kenney, G Li, T Zentgraf, S Zhang. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
https://doi.org/10.1038/nnano.2015.2
pmid: 25705870
|
69 |
W Luo, S Sun, H Xu, Q He, L Zhou. Transmissive ultrathin Pancharatnam–Berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033
https://doi.org/10.1103/PhysRevApplied.7.044033
|
70 |
A Pors, M G Nielsen, S I Bozhevolnyi. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2015, 2(8): 716–723
https://doi.org/10.1364/OPTICA.2.000716
|
71 |
D Wen, F Yue, G Li, G Zheng, K Chan, S Chen, M Chen, K F Li, P W H Wong, K W Cheah, E Y Pun, S Zhang, X Chen. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241
https://doi.org/10.1038/ncomms9241
pmid: 26354497
|
72 |
C Zhang, F Yue, D Wen, M Chen, Z Zhang, W Wang, X Chen. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
https://doi.org/10.1021/acsphotonics.7b00587
|
73 |
Z Zhang, D Wen, C Zhang, M Chen, W Wang, S Chen, X Chen. Multifunctional light sword metasurface lens. ACS Photonics, 2018, 5(5): 1794–1799
https://doi.org/10.1021/acsphotonics.7b01536
|
74 |
X Chen, M Chen, M Q Mehmood, D Wen, F Yue, C W Qiu, S Zhang. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Materials, 2015, 3(9): 1201–1206
https://doi.org/10.1002/adom.201500110
|
75 |
H X Xu, G Hu, M Jiang, S Tang, Y Wang, C Wang, Y Huang, X Ling, H Liu, J Zhou. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Advanced Materials Technologies, 2020, 5(1): 1900710
https://doi.org/10.1002/admt.201900710
|
76 |
W L Guo, G M Wang, X Y Luo, H S Hou, K Chen, Y Feng. Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring. Annalen der Physik, 2020, 532(3): 1900472
https://doi.org/10.1002/andp.201900472
|
77 |
J Zi, Q Xu, Q Wang, C Tian, Y Li, X Zhang, J Han, W Zhang. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Applied Physics Letters, 2018, 113(10): 101104
https://doi.org/10.1063/1.5042784
|
78 |
J Xu, R Li, J Qin, S Wang, T Han. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Optics Express, 2018, 26(16): 20913–20919
https://doi.org/10.1364/OE.26.020913
pmid: 30119398
|
79 |
S Hu, S Yang, Z Liu, J Li, C Gu. Broadband cross-polarization conversion by symmetry-breaking ultrathin metasurfaces. Applied Physics Letters, 2017, 111(24): 241108
https://doi.org/10.1063/1.5006540
|
80 |
M Borgese, F Costa, S Genovesi, A Monorchio, G Manara. Optimal design of miniaturized reflecting metasurfaces for ultra-wideband and angularly stable polarization conversion. Scientific Reports, 2018, 8(1): 7651
https://doi.org/10.1038/s41598-018-25934-3
pmid: 29769556
|
81 |
H Wu, S Liu, X Wan, L Zhang, D Wang, L Li, T J Cui. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Advancement of Science, 2017, 4(9): 1700098
https://doi.org/10.1002/advs.201700098
pmid: 28932671
|
82 |
C Guan, Z Wang, X Ding, K Zhang, B Ratni, S N Burokur, M Jin, Q Wu. Coding Huygens’ metasurface for enhanced quality holographic imaging. Optics Express, 2019, 27(5): 7108–7119
https://doi.org/10.1364/OE.27.007108
pmid: 30876282
|
83 |
S Liu, L Zhang, Q L Yang, Q Xu, Y Yang, A Noor, Q Zhang, S Iqbal, X Wan, Z Tian, W X Tang, Q Cheng, J G Han, W L Zhang, T J Cui. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Advanced Optical Materials, 2016, 4(12): 1965–1973
https://doi.org/10.1002/adom.201600471
|
84 |
D Wang, T Liu, Y Zhou, X Zheng, S Sun, Q He, L Zhou. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 2020, 10(1): 685–695
https://doi.org/10.1515/nanoph-2020-0465
|
85 |
S Li, Z Wang, S Dong, S Yi, F Guan, Y Chen, H Guo, Q He, L Zhou, S Sun. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 2020, 9(10): 3473–3481
https://doi.org/10.1515/nanoph-2020-0200
|
86 |
Z Wang, S Li, X Zhang, X Feng, Q Wang, J Han, Q He, W Zhang, S Sun, L Zhou. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Advanced Science, 2020, 7(19): 2000982
https://doi.org/10.1002/advs.202000982
pmid: 33042739
|
87 |
L Z Yin, T J Huang, F Y Han, J Y Liu, D Wang, P K Liu. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Optics Express, 2019, 27(13): 18928–18939
https://doi.org/10.1364/OE.27.018928
pmid: 31252827
|
88 |
C Meng, S Tang, F Ding, S I Bozhevolnyi. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering. ACS Photonics, 2020, 7(7): 1849–1856
https://doi.org/10.1021/acsphotonics.0c00681
|
89 |
T Cai, G M Wang, H X Xu, S W Tang, H Li, J G Liang, Y Q Zhuang. Bifunctional Pancharatnam–Berry metasurface with high-efficiency helicity-dependent transmissions and reflections. Annalen der Physik, 2018, 530(1): 1700321
https://doi.org/10.1002/andp.201700321
|
90 |
V A Fedotov, P L Mladyonov, S L Prosvirnin, A V Rogacheva, Y Chen, N I Zheludev. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Physical Review Letters, 2006, 97(16): 167401
https://doi.org/10.1103/PhysRevLett.97.167401
pmid: 17155432
|
91 |
J Liu, Z Li, W Liu, H Cheng, S Chen, J Tian. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Advanced Optical Materials, 2016, 4(12): 2028–2034
https://doi.org/10.1002/adom.201600602
|
92 |
G Ding, K Chen, G Qian, J Zhao, T Jiang, Y Feng, Z Wang. Independent energy allocation of dual-helical multi-beams with spin-selective transmissive metasurface. Advanced Optical Materials, 2020, 8(16): 2000342
https://doi.org/10.1002/adom.202000342
|
93 |
Q Fan, M Liu, C Zhang, W Zhu, Y Wang, P Lin, F Yan, L Chen, H J Lezec, Y Lu, A Agrawal, T Xu. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Physical Review Letters, 2020, 125(26): 267402
https://doi.org/10.1103/PhysRevLett.125.267402
pmid: 33449781
|
94 |
C Chen, S Gao, W Song, H Li, S N Zhu, T Li. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Letters, 2021, 21(4): 1815–1821
https://doi.org/10.1021/acs.nanolett.0c04902
pmid: 33533621
|
95 |
Y Xu, H Zhang, Q Li, X Zhang, Q Xu, W Zhang, C Hu, X Zhang, J Han, W Zhang. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 2020, 9(10): 3393–3402
https://doi.org/10.1515/nanoph-2020-0112
|
96 |
P Huo, C Zhang, W Zhu, M Liu, S Zhang, S Zhang, L Chen, H J Lezec, A Agrawal, Y Lu, T Xu. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
https://doi.org/10.1021/acs.nanolett.0c00471
pmid: 32155076
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|