Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (3) : 288-297    https://doi.org/10.1007/s12200-021-1223-3
RESEARCH ARTICLE
Ultra-thin polarization independent broadband terahertz metamaterial absorber
C. GANDHI, P. RAMESH BABU, K. SENTHILNATHAN()
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
 Download: PDF(2053 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we present the design of a polarization independent broadband absorber in the terahertz (THz) frequency range using a metasurface resonator. The absorber comprises of three layers, of which, the top layer is made of a vanadium dioxide (VO2) resonator with an electrical conductivity of σ = 200000 S/m; the bottom layer consists of a planar layer made of gold metal, and a dielectric layer is sandwiched between these two layers. The optimized absorber exhibits absorption greater than 90% from 2.54−5.54 THz. Thus, the corresponding bandwidth of the designed absorber is 3 THz. Further, the thermal tunable absorption and reflection spectra have been analyzed by varying the electrical conductivity of VO2. The impact of the various geometrical parameters on the absorption characteristics has also been assessed. The physics of generation of broadband absorption of the proposed device has been explored using field analysis. Finally, the absorption characteristics of the unit cell has been studied for various incident and polarization angles.

Keywords terahertz (THz)      metasurface      tunable absorber     
Corresponding Author(s): K. SENTHILNATHAN   
Just Accepted Date: 26 July 2021   Online First Date: 17 August 2021    Issue Date: 30 September 2021
 Cite this article:   
C. GANDHI,P. RAMESH BABU,K. SENTHILNATHAN. Ultra-thin polarization independent broadband terahertz metamaterial absorber[J]. Front. Optoelectron., 2021, 14(3): 288-297.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1223-3
https://academic.hep.com.cn/foe/EN/Y2021/V14/I3/288
Fig.1  Geometry of the designed absorber. (a) 3D view. (b) 2D view. p = 24 μm, t1 = 0.4 μm, t2 = 10 μm, t3 = 0.2 μm, l = 24 μm, b = 2 μm, r = 5 μm, and w = 1.5 μm
Fig.2  Absorption of the proposed metasurface absorber in different states of the resonator
Fig.3  Extracted material parameters. (a) Z. (b) ε-μ
Fig.4  Absorption. (a) Separate resonator. (b) Combination of the resonator
Fig.5  Tunable reflection and absorption with electrical conductivity of VO2. (a) Reflection. (b) Absorption
Fig.6  Field distribution at resonance frequencies of 3.09 and 4.89 THz. (a) Electric field along the z-direction. (b) Normalized electric field. (c) Magnetic field along the y-direction
Fig.7  Analysis of absorption over various geometrical parameters. (a) Length of the strip. (b) Width of the strip. (c) Outer radius of the circle. (d) Width of the circle. (e) Periodicity of the unit cell
Fig.8  Thickness response of (a) top resonator VO2 (t3) and (b) dielectric layer (t2)
Fig.9  Incident angle sensitivity of the absorber. (a) TE mode of polarization. (b) TM mode of polarization
Fig.10  Absorption of proposed absorber for different polarization angle. (a) TE polarization. (b) TM polarization
1 C Sirtori. Bridge for the terahertz gap. Nature, 2002, 417(6885): 132–133
https://doi.org/10.1038/417132b pmid: 12000945
2 M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
3 P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
4 J F Federici, B Schulkin, F Huang, D Gary, R Barat, F Oliveira, D Zimdars. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280
https://doi.org/10.1088/0268-1242/20/7/018
5 W W Salisbury. Absorbent body for electromagnetic waves. United States Patent US 2599944. 1952
6 E F Knott, J F Schaeffer, M T Tulley. Radar Cross Section. Raleigh: SciTech Publishing, 2004
7 C M Watts, X Liu, W J Padilla. Metamaterial electromagnetic wave absorbers. Advanced Materials, 2012, 24(23): OP98–OP120, OP181
https://doi.org/10.1002/adma.201200674 pmid: 22627995
8 N I Landy, S Sajuyigbe, J J Mock, D R Smith, W J Padilla. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402 pmid: 18518577
9 H Li, L H Yuan, B Zhou, X P Shen, Q Cheng, T J Cui. Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, 110(1): 014909
https://doi.org/10.1063/1.3608246
10 S K Sharma, S Ghosh, K V Srivastava. An ultra-thin triple-band polarization-insensitive metamaterial absorber for S, C and X band applications. Applied Physics A, Materials Science & Processing, 2016, 122(12): 1071
https://doi.org/10.1007/s00339-016-0588-4
11 Y Wen, W Ma, J Bailey, G Matmon, X Yu. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption. IEEE Transactions on Terahertz Science and Technology, 2015, 5(3): 406–411
https://doi.org/10.1109/TTHZ.2015.2401392
12 B Zhang, Y Zhao, Q Hao, B Kiraly, I C Khoo, S Chen, T J Huang. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express, 2011, 19(16): 15221–15228
https://doi.org/10.1364/OE.19.015221 pmid: 21934885
13 A Ghobadi, S A Dereshgi, H Hajian, B Bozok, B Butun, E Ozbay. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Scientific Reports, 2017, 7(1): 4755
https://doi.org/10.1038/s41598-017-04964-3 pmid: 28684879
14 H Tao, N I Landy, C M Bingham, X Zhang, R D Averitt, W J Padilla. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188
https://doi.org/10.1364/OE.16.007181 pmid: 18545422
15 B X Wang, Q Xie, G Dong, W Q Huang. Broadband terahertz perfect light absorber based on the modes of fundamental response and surface lattice resonance. OSA Continuum, 2018, 1(1): 213–220
https://doi.org/10.1364/OSAC.1.000213
16 Q Y Wen, H W Zhang, Y S Xie, Q H Yang, Y L Liu. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111
https://doi.org/10.1063/1.3276072
17 C Chen, S Can, J Schalch, X Zhao, G Duan, R D Averitt, X Zhang. Ultrathin terahertz triple-band metamaterial absorbers: consideration of interlayer coupling. Physical Review Applied, 2020, 14(5): 054021
https://doi.org/10.1103/PhysRevApplied.14.054021
18 B X Wang, C Tang, Q Niu, Y He, T Chen. Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Research Letters, 2019, 14(1): 64
https://doi.org/10.1186/s11671-019-2876-3 pmid: 30796617
19 S Liu, J Zhuge, S Ma, H Chen, D Bao, Q He, L Zhou, T J Cui. A bi-layered quad-band metamaterial absorber at terahertz frequencies. Journal of Applied Physics, 2015, 118(24): 245304
https://doi.org/10.1063/1.4938110
20 B X Wang, G Z Wang. Quad-band terahertz absorber based on a simple design of metamaterial resonator. IEEE Photonics Journal, 2016, 8(6): 1–8
https://doi.org/10.1109/JPHOT.2016.2633560
21 M Arabmohammadi, Z G Kashani, R A Sheikhan. Numerical analysis and circuit model of tunable dual-band terahertz absorbers composed of concentric graphene disks and rings. Journal of Electronic Materials, 2020, 49(10): 5721–5729
https://doi.org/10.1007/s11664-020-08336-y
22 W Su, X Chen, Z Geng. Dynamically tunable dual-frequency terahertz absorber based on graphene rings. IEEE Photonics Journal, 2019, 11(6): 1–8
https://doi.org/10.1109/JPHOT.2019.2956053
23 M Nejat, N Nozhat. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene. IEEE Transactions on Nanotechnology, 2019, 18: 684–690
https://doi.org/10.1109/TNANO.2019.2925964
24 X Huang, W He, F Yang, J Ran, Q Yang, S Xie. Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime. Optical Materials Express, 2019, 9(3): 1377–1385
https://doi.org/10.1364/OME.9.001377
25 Z L Wang, C X Hu, H B Liu, H F Zhang. A newfangled terahertz absorber tuned temper by temperature field doped by the liquid metal. Plasmonics, 2021, 16(2): 425–434
https://doi.org/10.1007/s11468-020-01296-3
26 H F Zhang, Z L Wang, C X Hu, H B Liu. A tailored broadband terahertz metamaterial absorber based on the thermal expansion feature of liquid metal. Results in Physics, 2020, 16: 102937
https://doi.org/10.1016/j.rinp.2020.102937
27 H Luo, Y Cheng. Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure. Optical Materials, 2020, 102: 109801
https://doi.org/10.1016/j.optmat.2020.109801
28 X R Kong, R N Dao, H F Zhang. A tunable double-decker ultra-broadband THz absorber based on a phase change material. Plasmonics, 2019, 14(5): 1233–1241
https://doi.org/10.1007/s11468-019-00912-1
29 Y Zhang, P Wu, Z Zhou, X Chen, Z Yi, J Zhu, T Zhang, H Jile. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 85154–85161
https://doi.org/10.1109/ACCESS.2020.2992700
30 C Zhang, C Huang, M Pu, J Song, X Luo. Tunable absorbers based on an electrically controlled resistive layer. Plasmonics, 2019, 14(2): 327–333
https://doi.org/10.1007/s11468-018-0808-1
31 S Yuan, R Yang, J Tian, W Zhang. A photoexcited switchable tristate terahertz metamaterial absorber. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(1): e22014
https://doi.org/10.1002/mmce.22014
32 B X Wang, G Z Wang, H Zhu. Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap. RSC Advances, 2017, 7(43): 26888–26893
https://doi.org/10.1039/C7RA02768K
33 H Cai, S Chen, C Zou, Q Huang, Y Liu, X Hu, Z Fu, Y Zhao, H He, Y Lu. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Advanced Optical Materials, 2018, 6(14): 1800257
https://doi.org/10.1002/adom.201800257
34 S Wang, L Kang, D H Werner. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Scientific Reports, 2017, 7(1): 4326
https://doi.org/10.1038/s41598-017-04692-8 pmid: 28127051
35 J Zhou, L Zhang, G Tuttle, T Koschny, C M Soukoulis. Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101
https://doi.org/10.1103/PhysRevB.73.041101
36 Y Q Ye, Y Jin, S He. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B, Optical Physics, 2010, 27(3): 498–504
https://doi.org/10.1364/JOSAB.27.000498
37 F Ding, Y Cui, X Ge, Y Jin, S He. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2012, 100(10): 103506
https://doi.org/10.1063/1.3692178
38 D R Smith, D C Vier, T Koschny, C M Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3 Pt 2B): 036617
https://doi.org/10.1103/PhysRevE.71.036617 pmid: 15903615
[1] Dong Kyo OH, Taejun LEE, Byoungsu KO, Trevon BADLOE, Jong G. OK, Junsuk RHO. Nanoimprint lithography for high-throughput fabrication of metasurfaces[J]. Front. Optoelectron., 2021, 14(2): 229-251.
[2] Chunyu LIU, Yanfeng LI, Xi FENG, Xixiang ZHANG, Jiaguang HAN, Weili ZHANG. Dual non-diffractive terahertz beam generators based on all-dielectric metasurface[J]. Front. Optoelectron., 2021, 14(2): 201-210.
[3] Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Front. Optoelectron., 2021, 14(2): 187-200.
[4] Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG. Magnetically controllable metasurface and its application[J]. Front. Optoelectron., 2021, 14(2): 154-169.
[5] Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING. Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces[J]. Front. Optoelectron., 2021, 14(2): 134-147.
[6] Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Front. Optoelectron., 2021, 14(1): 37-63.
[7] Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Front. Optoelectron., 2021, 14(1): 4-36.
[8] Dixiang SHAO, Chen YAO, Zhanglong FU, Wenjian WAN, Ziping LI, Juncheng CAO. Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation[J]. Front. Optoelectron., 2021, 14(1): 94-98.
[9] Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
[10] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[11] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[12] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[13] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[14] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[15] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed