|
|
Ultra-thin polarization independent broadband terahertz metamaterial absorber |
C. GANDHI, P. RAMESH BABU, K. SENTHILNATHAN( ) |
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India |
|
|
Abstract In this work, we present the design of a polarization independent broadband absorber in the terahertz (THz) frequency range using a metasurface resonator. The absorber comprises of three layers, of which, the top layer is made of a vanadium dioxide (VO2) resonator with an electrical conductivity of σ = 200000 S/m; the bottom layer consists of a planar layer made of gold metal, and a dielectric layer is sandwiched between these two layers. The optimized absorber exhibits absorption greater than 90% from 2.54−5.54 THz. Thus, the corresponding bandwidth of the designed absorber is 3 THz. Further, the thermal tunable absorption and reflection spectra have been analyzed by varying the electrical conductivity of VO2. The impact of the various geometrical parameters on the absorption characteristics has also been assessed. The physics of generation of broadband absorption of the proposed device has been explored using field analysis. Finally, the absorption characteristics of the unit cell has been studied for various incident and polarization angles.
|
Keywords
terahertz (THz)
metasurface
tunable absorber
|
Corresponding Author(s):
K. SENTHILNATHAN
|
Just Accepted Date: 26 July 2021
Online First Date: 17 August 2021
Issue Date: 30 September 2021
|
|
1 |
C Sirtori. Bridge for the terahertz gap. Nature, 2002, 417(6885): 132–133
https://doi.org/10.1038/417132b
pmid: 12000945
|
2 |
M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
|
3 |
P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
|
4 |
J F Federici, B Schulkin, F Huang, D Gary, R Barat, F Oliveira, D Zimdars. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280
https://doi.org/10.1088/0268-1242/20/7/018
|
5 |
W W Salisbury. Absorbent body for electromagnetic waves. United States Patent US 2599944. 1952
|
6 |
E F Knott, J F Schaeffer, M T Tulley. Radar Cross Section. Raleigh: SciTech Publishing, 2004
|
7 |
C M Watts, X Liu, W J Padilla. Metamaterial electromagnetic wave absorbers. Advanced Materials, 2012, 24(23): OP98–OP120, OP181
https://doi.org/10.1002/adma.201200674
pmid: 22627995
|
8 |
N I Landy, S Sajuyigbe, J J Mock, D R Smith, W J Padilla. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
pmid: 18518577
|
9 |
H Li, L H Yuan, B Zhou, X P Shen, Q Cheng, T J Cui. Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, 110(1): 014909
https://doi.org/10.1063/1.3608246
|
10 |
S K Sharma, S Ghosh, K V Srivastava. An ultra-thin triple-band polarization-insensitive metamaterial absorber for S, C and X band applications. Applied Physics A, Materials Science & Processing, 2016, 122(12): 1071
https://doi.org/10.1007/s00339-016-0588-4
|
11 |
Y Wen, W Ma, J Bailey, G Matmon, X Yu. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption. IEEE Transactions on Terahertz Science and Technology, 2015, 5(3): 406–411
https://doi.org/10.1109/TTHZ.2015.2401392
|
12 |
B Zhang, Y Zhao, Q Hao, B Kiraly, I C Khoo, S Chen, T J Huang. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express, 2011, 19(16): 15221–15228
https://doi.org/10.1364/OE.19.015221
pmid: 21934885
|
13 |
A Ghobadi, S A Dereshgi, H Hajian, B Bozok, B Butun, E Ozbay. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Scientific Reports, 2017, 7(1): 4755
https://doi.org/10.1038/s41598-017-04964-3
pmid: 28684879
|
14 |
H Tao, N I Landy, C M Bingham, X Zhang, R D Averitt, W J Padilla. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188
https://doi.org/10.1364/OE.16.007181
pmid: 18545422
|
15 |
B X Wang, Q Xie, G Dong, W Q Huang. Broadband terahertz perfect light absorber based on the modes of fundamental response and surface lattice resonance. OSA Continuum, 2018, 1(1): 213–220
https://doi.org/10.1364/OSAC.1.000213
|
16 |
Q Y Wen, H W Zhang, Y S Xie, Q H Yang, Y L Liu. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111
https://doi.org/10.1063/1.3276072
|
17 |
C Chen, S Can, J Schalch, X Zhao, G Duan, R D Averitt, X Zhang. Ultrathin terahertz triple-band metamaterial absorbers: consideration of interlayer coupling. Physical Review Applied, 2020, 14(5): 054021
https://doi.org/10.1103/PhysRevApplied.14.054021
|
18 |
B X Wang, C Tang, Q Niu, Y He, T Chen. Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Research Letters, 2019, 14(1): 64
https://doi.org/10.1186/s11671-019-2876-3
pmid: 30796617
|
19 |
S Liu, J Zhuge, S Ma, H Chen, D Bao, Q He, L Zhou, T J Cui. A bi-layered quad-band metamaterial absorber at terahertz frequencies. Journal of Applied Physics, 2015, 118(24): 245304
https://doi.org/10.1063/1.4938110
|
20 |
B X Wang, G Z Wang. Quad-band terahertz absorber based on a simple design of metamaterial resonator. IEEE Photonics Journal, 2016, 8(6): 1–8
https://doi.org/10.1109/JPHOT.2016.2633560
|
21 |
M Arabmohammadi, Z G Kashani, R A Sheikhan. Numerical analysis and circuit model of tunable dual-band terahertz absorbers composed of concentric graphene disks and rings. Journal of Electronic Materials, 2020, 49(10): 5721–5729
https://doi.org/10.1007/s11664-020-08336-y
|
22 |
W Su, X Chen, Z Geng. Dynamically tunable dual-frequency terahertz absorber based on graphene rings. IEEE Photonics Journal, 2019, 11(6): 1–8
https://doi.org/10.1109/JPHOT.2019.2956053
|
23 |
M Nejat, N Nozhat. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene. IEEE Transactions on Nanotechnology, 2019, 18: 684–690
https://doi.org/10.1109/TNANO.2019.2925964
|
24 |
X Huang, W He, F Yang, J Ran, Q Yang, S Xie. Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime. Optical Materials Express, 2019, 9(3): 1377–1385
https://doi.org/10.1364/OME.9.001377
|
25 |
Z L Wang, C X Hu, H B Liu, H F Zhang. A newfangled terahertz absorber tuned temper by temperature field doped by the liquid metal. Plasmonics, 2021, 16(2): 425–434
https://doi.org/10.1007/s11468-020-01296-3
|
26 |
H F Zhang, Z L Wang, C X Hu, H B Liu. A tailored broadband terahertz metamaterial absorber based on the thermal expansion feature of liquid metal. Results in Physics, 2020, 16: 102937
https://doi.org/10.1016/j.rinp.2020.102937
|
27 |
H Luo, Y Cheng. Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure. Optical Materials, 2020, 102: 109801
https://doi.org/10.1016/j.optmat.2020.109801
|
28 |
X R Kong, R N Dao, H F Zhang. A tunable double-decker ultra-broadband THz absorber based on a phase change material. Plasmonics, 2019, 14(5): 1233–1241
https://doi.org/10.1007/s11468-019-00912-1
|
29 |
Y Zhang, P Wu, Z Zhou, X Chen, Z Yi, J Zhu, T Zhang, H Jile. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 85154–85161
https://doi.org/10.1109/ACCESS.2020.2992700
|
30 |
C Zhang, C Huang, M Pu, J Song, X Luo. Tunable absorbers based on an electrically controlled resistive layer. Plasmonics, 2019, 14(2): 327–333
https://doi.org/10.1007/s11468-018-0808-1
|
31 |
S Yuan, R Yang, J Tian, W Zhang. A photoexcited switchable tristate terahertz metamaterial absorber. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(1): e22014
https://doi.org/10.1002/mmce.22014
|
32 |
B X Wang, G Z Wang, H Zhu. Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap. RSC Advances, 2017, 7(43): 26888–26893
https://doi.org/10.1039/C7RA02768K
|
33 |
H Cai, S Chen, C Zou, Q Huang, Y Liu, X Hu, Z Fu, Y Zhao, H He, Y Lu. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Advanced Optical Materials, 2018, 6(14): 1800257
https://doi.org/10.1002/adom.201800257
|
34 |
S Wang, L Kang, D H Werner. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Scientific Reports, 2017, 7(1): 4326
https://doi.org/10.1038/s41598-017-04692-8
pmid: 28127051
|
35 |
J Zhou, L Zhang, G Tuttle, T Koschny, C M Soukoulis. Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101
https://doi.org/10.1103/PhysRevB.73.041101
|
36 |
Y Q Ye, Y Jin, S He. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B, Optical Physics, 2010, 27(3): 498–504
https://doi.org/10.1364/JOSAB.27.000498
|
37 |
F Ding, Y Cui, X Ge, Y Jin, S He. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2012, 100(10): 103506
https://doi.org/10.1063/1.3692178
|
38 |
D R Smith, D C Vier, T Koschny, C M Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3 Pt 2B): 036617
https://doi.org/10.1103/PhysRevE.71.036617
pmid: 15903615
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|