Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 1-3    https://doi.org/10.1007/s12200-021-1224-2
EDITORIAL
Preface to the special issue on “Terahertz Science and Applications”
Xinliang ZHANG1(), Xiaojun WU2()
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
 Download: PDF(111 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Xinliang ZHANG,Xiaojun WU   
Online First Date: 02 April 2021    Issue Date: 19 April 2021
 Cite this article:   
Xinliang ZHANG,Xiaojun WU. Preface to the special issue on “Terahertz Science and Applications”[J]. Front. Optoelectron., 2021, 14(1): 1-3.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1224-2
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/1
1 P H Siegel. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928
https://doi.org/10.1109/22.989974
2 C J Strachan, T Rades, D A Newnham, K C Gordon, M Pepper, P F Taday. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chemical Physics Letters, 2004, 390(1–3): 20–24
3 B B Hu, M C Nuss. Imaging with terahertz waves. Optics Letters, 1995, 20(16): 1716–1718
https://doi.org/10.1364/OL.20.001716 pmid: 19862134
4 C Jansen, S Wietzke, O Peters, M Scheller, N Vieweg, M Salhi, N Krumbholz, C Jördens, T Hochrein, M Koch. Terahertz imaging: applications and perspectives. Applied Optics, 2010, 49(19): E48–E57
https://doi.org/10.1364/AO.49.000E48 pmid: 20648121
5 R I Stantchev, X Yu, T Blu, E Pickwell-MacPherson. Real-time terahertz imaging with a single-pixel detector. Nature Communications, 2020, 11(1): 2535
https://doi.org/10.1038/s41467-020-16370-x pmid: 32439984
6 C Stoik, M Bohn, J Blackshire. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT & E International, 2010, 43(2): 106–115
https://doi.org/10.1016/j.ndteint.2009.09.005
7 E Heinz, T May, D Born, G Zieger, S Anders, V Zakosarenko, H G Meyer, C Schäffel. Passive 350 GHz video imaging systems for security applications. International Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(10): 879–895
https://doi.org/10.1007/s10762-015-0170-8
8 S Zhong. Progress in terahertz nondestructive testing: a review. Frontiers of Mechanical Engineering, 2019, 14(3): 273–281
https://doi.org/10.1007/s11465-018-0495-9
9 T Nagatsuma, S Horiguchi, Y Minamikata, Y Yoshimizu, S Hisatake, S Kuwano, N Yoshimoto, J Terada, H Takahashi. Terahertz wireless communications based on photonics technologies. Optics Express, 2013, 21(20): 23736–23747
https://doi.org/10.1364/OE.21.023736 pmid: 24104286
10 A J Seeds, H Shams, M J Fice, C C Renaud. Terahertz photonics for wireless communication. Journal of Lightwave Technology, 2015, 33(3): 579–587
https://doi.org/10.1109/JLT.2014.2355137
11 J F O’Hara, S Ekin, W Choi, I Song. A perspective on terahertz next-generation wireless. Technologies, 2019, 7(2): 43
https://doi.org/10.3390/technologies7020043
12 V M Pillet, A Aparicio, F Sánchez. Payload and Mission Definition in Space Science. Cambridge: Cambridge University Press, 2005
13 T Low, P Avouris. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8(2): 1086–1101
https://doi.org/10.1021/nn406627u pmid: 24484181
14 A Rogalski, M Kopytko, P Martyniuk. Two-dimensional infrared and terahertz detectors: outlook and status. Applied Physics Reviews, 2019, 6(2): 021316
https://doi.org/10.1063/1.5088578
15 M Beruete, I Jáuregui‐López. Terahertz sensing based on metasurfaces. Advanced Optical Materials, 2020, 8(3): 1900721
https://doi.org/10.1002/adom.201900721
16 Y Yang, Y Yamagami, X Yu, P Pitchappa, J Webber, B Zhang, M Fujita, T Nagatsuma, R Singh. Terahertz topological photonics for on-chip communication. Nature Photonics, 2020, 14(7): 446–451
https://doi.org/10.1038/s41566-020-0618-9
17 Y Zhang, K Li, H Zhao. Intense terahertz radiation: generation and application. Frontiers of Optoelectronics, 2021, 14(1): 4–36
https://doi.org/10.1007/s12200-020-1052-9
18 Q Jin, Y W E, X C Zhang. Terahertz aqueous photonics. Frontiers of Optoelectronics, 2021, 14(1): 37–63
https://doi.org/10.1007/s12200-020-1070-7
19 E Isgandarov, X Ropagnol, M Singh, T Ozaki. Intense terahertz generation from photoconductive antennas. Frontiers of Optoelectronics, 2021, 14(1): 64–93
https://doi.org/10.1007/s12200-020-1081-4
20 D Shao, C Yao, Z Fu, W Wan, Z Li, J Cao. Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation. Frontiers of Optoelectronics, 2021, 14(1): 94–98
https://doi.org/10.1007/s12200-020-1083-2
21 J W Zuber, C Zhang. Nonlinear effects in topological materials. Frontiers of Optoelectronics, 2021, 14(1): 99–109
https://doi.org/10.1007/s12200-020-1088-x
22 A Baydin, T Makihara, N M Peraca, J Kono. Time-domain terahertz spectroscopy in high magnetic fields. Frontiers of Optoelectronics, 2021, 14(1): 110–129
https://doi.org/10.1007/s12200-020-1101-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed