|
|
Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites |
Pengfei FU1, Sanlue HU1,2, Jiang TANG1,3, Zewen XIAO1,2( ) |
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Halide perovskites have attracted tremendous attention as semiconducting materials for various optoelectronic applications. The functional metal-halide octahedral units and their spatial arrangements play a key role in the optoelectronic properties of these materials. At present, most of the efforts for material exploration focus on substituting the constituent elements of functional octahedral units, whereas designing the spatial arrangement of the functional units has received relatively little consideration. In this work, via a global structure search based on density functional theory (DFT), we discovered a metastable three-dimensional honeycomb-like perovskite structure with the functional octahedral units arranged through mixed edge- and corner-sharing. We experimentally confirmed that the honeycomb-like perovskite structure can be stabilized by divalent molecular cations with suitable size and shape, such as 2,2′-bisimidazole (BIM). DFT calculations and experimental characterizations revealed that the honeycomb-like perovskite with the formula of BIMPb2I6, synthesized through a solution process, exhibits high electronic dimensionality, a direct allowed bandgap of 2.1 eV, small effective masses for both electrons and holes, and high optical absorption coefficients, which indicates a significant potential for optoelectronic applications. The employed combination of DFT and experimental study provides an exemplary approach to explore prospective optoelectronic semiconductors via spatially arranging functional units.
|
Keywords
lead halide perovskite
electronic dimensionality
functional octahedral units
optoelectronic properties
photodetector
|
Corresponding Author(s):
Zewen XIAO
|
Online First Date: 23 April 2021
Issue Date: 14 July 2021
|
|
1 |
J Y Kim, J W Lee, H S Jung, H Shin, N G Park. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867–7918
https://doi.org/10.1021/acs.chemrev.0c00107
pmid: 32786671
|
2 |
A K Jena, A Kulkarni, T Miyasaka. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
https://doi.org/10.1021/acs.chemrev.8b00539
pmid: 30821144
|
3 |
X Yu, H N Tsao, Z Zhang, P Gao. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Advanced Optical Materials, 2020, 8(21): 2001095
https://doi.org/10.1002/adom.202001095
|
4 |
Y Fang, Q Dong, Y Shao, Y Yuan, J Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
https://doi.org/10.1038/nphoton.2015.156
|
5 |
H P Wang, S Li, X Liu, Z Shi, X Fang, J H He. Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): e2003309
https://doi.org/10.1002/adma.202003309
pmid: 33346383
|
6 |
Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149
pmid: 25086602
|
7 |
W Xu, Q Hu, S Bai, C Bao, Y Miao, Z Yuan, T Borzda, A J Barker, E Tyukalova, Z Hu, M Kawecki, H Wang, Z Yan, X Liu, X Shi, K Uvdal, M Fahlman, W Zhang, M Duchamp, J M Liu, A Petrozza, J Wang, L M Liu, W Huang, F Gao. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
https://doi.org/10.1038/s41566-019-0390-x
|
8 |
J Luo, X Wang, S Li, J Liu, Y Guo, G Niu, L Yao, Y Fu, L Gao, Q Dong, C Zhao, M Leng, F Ma, W Liang, L Wang, S Jin, J Han, L Zhang, J Etheridge, J Wang, Y Yan, E H Sargent, J Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
https://doi.org/10.1038/s41586-018-0691-0
pmid: 30405238
|
9 |
C Yan, K Lin, J Lu, Z Wei. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13(3): 282–290
https://doi.org/10.1007/s12200-020-1046-7
|
10 |
J Huang, Y Yuan, Y Shao, Y Yan. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews. Materials, 2017, 2(7): 17042
https://doi.org/10.1038/natrevmats.2017.42
|
11 |
Z Xiao, Y Yan. Progress in theoretical study of metal halide perovskite solar cell materials. Energy Materials, 2017, 7(22): 1701136
https://doi.org/10.1002/aenm.201701136
|
12 |
W J Yin, T Shi, Y Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27): 4653–4658
https://doi.org/10.1002/adma.201306281
pmid: 24827122
|
13 |
W Meng, X Wang, Z Xiao, J Wang, D B Mitzi, Y Yan. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. Journal of Physical Chemistry Letters, 2017, 8(13): 2999–3007
https://doi.org/10.1021/acs.jpclett.7b01042
pmid: 28604009
|
14 |
P Umari, E Mosconi, F De Angelis. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Scientific Reports, 2014, 4(1): 4467
https://doi.org/10.1038/srep04467
pmid: 24667758
|
15 |
M A Green, Y Jiang, A M Soufiani, A Ho-Baillie. Optical properties of photovoltaic organic-inorganic lead halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(23): 4774–4785
https://doi.org/10.1021/acs.jpclett.5b01865
pmid: 26560862
|
16 |
S D Stranks, G E Eperon, G Grancini, C Menelaou, M J P Alcocer, T Leijtens, L M Herz, A Petrozza, H J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
https://doi.org/10.1126/science.1243982
pmid: 24136964
|
17 |
W J Yin, T Shi, Y Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104(6): 063903
https://doi.org/10.1063/1.4864778
|
18 |
J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
https://doi.org/10.1021/acs.jpclett.6b02800
pmid: 28071911
|
19 |
H Huang, M I Bodnarchuk, S V Kershaw, M V Kovalenko, A L Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2017, 2(9): 2071–2083
https://doi.org/10.1021/acsenergylett.7b00547
pmid: 28920080
|
20 |
D Meggiolaro, S G Motti, E Mosconi, A J Barker, J Ball, C Andrea Riccardo Perini, F Deschler, A Petrozza, F De Angelis. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
https://doi.org/10.1039/C8EE00124C
|
21 |
K Chen, L Li. Ordered structures with functional units as a paradigm of material design. Advanced Materials, 2019, 31(32): e1901115
https://doi.org/10.1002/adma.201901115
pmid: 31199019
|
22 |
Z Xiao, W Meng, J Wang, D B Mitzi, Y Yan. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
https://doi.org/10.1039/C6MH00519E
|
23 |
C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x
pmid: 23834108
|
24 |
J Brgoch, A J Lehner, M L Chabinyc, R Seshadri. Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. Journal of Physical Chemistry C, 2014, 118(48): 27721–27727
https://doi.org/10.1021/jp508880y
|
25 |
B Saparov, D B Mitzi. Organic-inorganic perovskites: structural versatility for functional materials design. Chemical Reviews, 2016, 116(7): 4558–4596
https://doi.org/10.1021/acs.chemrev.5b00715
pmid: 27040120
|
26 |
R F Kahwagi, S T Thornton, B Smith, G I Koleilat. Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13(3): 196–224
https://doi.org/10.1007/s12200-020-1039-6
|
27 |
C P Raptopoulou, A Terzis, G A Mousdis, G C Papavassiliou. Preparation, structure and optical properties of [CH3SC(NH2)2]3SnI5, [CH3SC(NH2)2][HSC(NH2)2]SnBr4, (CH3C5H4NCH3)PbBr3, and [C6H5CH2SC(NH2)2]4Pb3I10. Zeitschrift für Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, Biochemie, Biophysik, Biologie, 2002, 57(6): 645–650
https://doi.org/10.1515/znb-2002-0609
|
28 |
M I Saidaminov, J Almutlaq, S Sarmah, I Dursun, A A Zhumekenov, R Begum, J Pan, N Cho, O F Mohammed, O M Bakr. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840–845
https://doi.org/10.1021/acsenergylett.6b00396
|
29 |
Y Zhang, M I Saidaminov, I Dursun, H Yang, B Murali, E Alarousu, E Yengel, B A Alshankiti, O M Bakr, O F Mohammed. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. Journal of Physical Chemistry Letters, 2017, 8(5): 961–965
https://doi.org/10.1021/acs.jpclett.7b00105
pmid: 28181438
|
30 |
H Lin, C Zhou, Y Tian, T Siegrist, B Ma. Low-dimensional organometal halide perovskites. ACS Energy Letters, 2018, 3(1): 54–62
https://doi.org/10.1021/acsenergylett.7b00926
pmid: 30662954
|
31 |
M D Smith, B A Connor, H I Karunadasa. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
https://doi.org/10.1021/acs.chemrev.8b00477
pmid: 30689364
|
32 |
Z Tan, J Li, C Zhang, Z Li, Q Hu, Z Xiao, T Kamiya, H Hosono, G Niu, E Lifshitz, Y Cheng, J Tang. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
https://doi.org/10.1002/adfm.201801131
|
33 |
J Li, Z Tan, M Hu, C Chen, J Luo, S Li, L Gao, Z Xiao, G Niu, J Tang. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
https://doi.org/10.1007/s12200-019-0907-4
|
34 |
Z Tan, Y Chu, J Chen, J Li, G Ji, G Niu, L Gao, Z Xiao, J Tang. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: bright luminescence and high anti-water stability. Advanced Materials, 2020, 32(32): e2002443
https://doi.org/10.1002/adma.202002443
pmid: 32596962
|
35 |
Z Xiao, Z Song, Y Yan. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Advanced Materials, 2019, 31(47): e1803792
https://doi.org/10.1002/adma.201803792
pmid: 30680809
|
36 |
X G G Zhao, D Yang, J C C Ren, Y Sun, Z Xiao, L Zhang. Rational design of halide double perovskites for optoelectronic applications. Joule, 2018, 2(9): 1662–1673
https://doi.org/10.1016/j.joule.2018.06.017
|
37 |
A Swarnkar, A R Marshall, E M Sanehira, B D Chernomordik, D T Moore, J A Christians, T Chakrabarti, J M Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
https://doi.org/10.1126/science.aag2700
pmid: 27846497
|
38 |
Y Jiang, J Yuan, Y Ni, J Yang, Y Wang, T Jiu, M Yuan, J Chen. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356–1368
https://doi.org/10.1016/j.joule.2018.05.004
|
39 |
B Han, B Cai, Q Shan, J Song, J Li, F Zhang, J Chen, T Fang, Q Ji, X Xu, H Zeng. Stable, efficient red perovskite light-emitting diodes by (α,δ)-CsPbI3 phase engineering. Advanced Functional Materials, 2018, 28(47): 1804285
https://doi.org/10.1002/adfm.201804285
|
40 |
K Chen, Q Zhong, W Chen, B Sang, Y Wang, T Yang, Y Liu, Y Zhang, H Zhang. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 2019, 29(24): 1900991
https://doi.org/10.1002/adfm.201900991
|
41 |
Y Hu, F Bai, X Liu, Q Ji, X Miao, T Qiu, S Zhang. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Letters, 2017, 2(10): 2219–2227
https://doi.org/10.1021/acsenergylett.7b00508
|
42 |
P M Woodward. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica. Section B, Structural Science, 1997, 53(1): 32–43
https://doi.org/10.1107/S0108768196010713
|
43 |
D Umeyama, L Leppert, B A Connor, M A Manumpil, J B Neaton, H I Karunadasa. Expanded analogs of three-dimensional lead-halide hybrid perovskites. Angewandte Chemie International Edition, 2020, 59(43): 19087–19094
https://doi.org/10.1002/anie.202005012
pmid: 32649785
|
44 |
Z Tang, J Guan, A M Guloy. Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations. Journal of Materials Chemistry, 2001, 11(2): 479–482
https://doi.org/10.1039/b007639m
|
45 |
C Quarti, G Grancini, E Mosconi, P Bruno, J M Ball, M M Lee, H J Snaith, A Petrozza, F D Angelis. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
https://doi.org/10.1021/jz402589q
pmid: 26270700
|
46 |
D Cortecchia, S Neutzner, A R Srimath Kandada, E Mosconi, D Meggiolaro, F De Angelis, C Soci, A Petrozza. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
https://doi.org/10.1021/jacs.6b10390
pmid: 28024394
|
47 |
O Yaffe, Y Guo, L Z Tan, D A Egger, T Hull, C C Stoumpos, F Zheng, T F Heinz, L Kronik, M G Kanatzidis, J S Owen, A M Rappe, M A Pimenta, L E Brus. Local polar fluctuations in lead halide perovskite crystals. Physical Review Letters, 2017, 118(13): 136001
https://doi.org/10.1103/PhysRevLett.118.136001
pmid: 28409968
|
48 |
Z Xiao, W Meng, B Saparov, H S Duan, C Wang, C Feng, W Liao, W Ke, D Zhao, J Wang, D B Mitzi, Y Yan. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density functional theory study. Journal of Physical Chemistry Letters, 2016, 7(7): 1213–1218
https://doi.org/10.1021/acs.jpclett.6b00248
pmid: 26975723
|
49 |
M Saba, M Cadelano, D Marongiu, F Chen, V Sarritzu, N Sestu, C Figus, M Aresti, R Piras, A G Lehmann, C Cannas, A Musinu, F Quochi, A Mura, G Bongiovanni. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
https://doi.org/10.1038/ncomms6049
pmid: 25266869
|
50 |
J Shi, H Zhang, Y Li, J J Jasieniak, Y Li, H Wu, Y Luo, D Li, Q Meng. Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy & Environmental Science, 2018, 11(6): 1460–1469
https://doi.org/10.1039/C7EE03543H
|
51 |
G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169
pmid: 9984901
|
52 |
Y Wang, J Lv, L Zhu, Y Ma. Crystal structure prediction via particle-swarm optimization. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(9): 094116
https://doi.org/10.1103/PhysRevB.82.094116
|
53 |
Y Wang, J Lv, L Zhu, Y Ma. CALYPSO: a method for crystal structure prediction. Computer Physics Communications, 2012, 183(10): 2063–2070
https://doi.org/10.1016/j.cpc.2012.05.008
|
54 |
J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
pmid: 10062328
|
55 |
A Togo, I Tanaka. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108: 1–5
https://doi.org/10.1016/j.scriptamat.2015.07.021
|
56 |
Q Zheng. VASP_TDM, , 2016
|
57 |
J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118(18): 8207–8215
https://doi.org/10.1063/1.1564060
|
58 |
J Heyd, G E Scuseria, M Ernzerhof. Erratum: “Hybrid functionals based on a screened Coulomb potential”. Journal of Chemical Physics, 2006, 124(21): 219906
https://doi.org/10.1063/1.2204597
|
59 |
A Fonari, S Stauffer. VASP_RAMAN.PY, , 2013
|
60 |
S Matsumoto, M Watanabe, M Akazome. Incrementing Stokes shifts through the formation of 2,2′-biimidazoldiium salts. Organic Letters, 2018, 20(12): 3613–3617
https://doi.org/10.1021/acs.orglett.8b01376
pmid: 29790755
|
61 |
K Momma, F Izumi. VESTA : a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41(3): 653–658
https://doi.org/10.1107/S0021889808012016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|