Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 252-259    https://doi.org/10.1007/s12200-021-1227-z
RESEARCH ARTICLE
Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites
Pengfei FU1, Sanlue HU1,2, Jiang TANG1,3, Zewen XIAO1,2()
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(848 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Halide perovskites have attracted tremendous attention as semiconducting materials for various optoelectronic applications. The functional metal-halide octahedral units and their spatial arrangements play a key role in the optoelectronic properties of these materials. At present, most of the efforts for material exploration focus on substituting the constituent elements of functional octahedral units, whereas designing the spatial arrangement of the functional units has received relatively little consideration. In this work, via a global structure search based on density functional theory (DFT), we discovered a metastable three-dimensional honeycomb-like perovskite structure with the functional octahedral units arranged through mixed edge- and corner-sharing. We experimentally confirmed that the honeycomb-like perovskite structure can be stabilized by divalent molecular cations with suitable size and shape, such as 2,2′-bisimidazole (BIM). DFT calculations and experimental characterizations revealed that the honeycomb-like perovskite with the formula of BIMPb2I6, synthesized through a solution process, exhibits high electronic dimensionality, a direct allowed bandgap of 2.1 eV, small effective masses for both electrons and holes, and high optical absorption coefficients, which indicates a significant potential for optoelectronic applications. The employed combination of DFT and experimental study provides an exemplary approach to explore prospective optoelectronic semiconductors via spatially arranging functional units.

Keywords lead halide perovskite      electronic dimensionality      functional octahedral units      optoelectronic properties      photodetector     
Corresponding Author(s): Zewen XIAO   
Online First Date: 23 April 2021    Issue Date: 14 July 2021
 Cite this article:   
Pengfei FU,Sanlue HU,Jiang TANG, et al. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1227-z
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/252
Fig.1  (a) Crystal structures, formation energies, and (b) band structures of newly-predicted honeycomb-like CsPbI3 perovskite alone with already-synthesized α-, γ-, and δ-CsPbI3 for comparison. The band structures are aligned by the averaged electrostatic potential, with the valence band maximum of α-CsPbI3 set to zero
Fig.2  (a) Crystal structure of BIMPb2I6 viewed along the [001] direction; Pb, I, C, N, and H atoms are denoted by dark gray, purple, brown, light blue, and pink spheres, respectively. The octahedral nature of the Pb is illustrated using polyhedra. (b) Experimental and simulated powder X-ray diffraction (PXRD) patterns of BIMPb2I6. (c) Room-temperature low-frequency Raman spectra of BIMPb2I6. (d) Fourier transform infrared spectra of BIMPb2I6, along with the BIMI precursor for comparison
Fig.3  (a) Calculated band structure of BIMPb2I6 along the k-path shown in the inset Brillouin zone. (b) Isosurface plots of charge density corresponding to conduction band minimum (CBM) and valence band maximum (VBM) at the M point. (c) Calculated transition matrix elements (unit: Debye2) along the k-path shown in the inset Brillouin zone
Fig.4  (a) Ultraviolet–visible (UV–Vis) absorption and photoluminance (PL) spectra of BIMPb2I6 powder. The inset depicts the dark-grown BIMPb2I6 crystals. (b) Current–voltage (IV) curves of a detector based on a BIMPb2I6 single crystal under laser illumination (λ = 637 nm) with different power intensities. (c) Switching cycles of photoresponse of the device under 20 mW/cm2 of 637-nm laser at the bias voltage of 10 V. (d) A single switching cycle of photoresponse. The rise time (tr) and fall time (tf) are intervals that photocurrent rise from 10% to 90% and fall from 90% to 10%, respectively
1 J Y Kim, J W Lee, H S Jung, H Shin, N G Park. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867–7918
https://doi.org/10.1021/acs.chemrev.0c00107 pmid: 32786671
2 A K Jena, A Kulkarni, T Miyasaka. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
https://doi.org/10.1021/acs.chemrev.8b00539 pmid: 30821144
3 X Yu, H N Tsao, Z Zhang, P Gao. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Advanced Optical Materials, 2020, 8(21): 2001095
https://doi.org/10.1002/adom.202001095
4 Y Fang, Q Dong, Y Shao, Y Yuan, J Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
https://doi.org/10.1038/nphoton.2015.156
5 H P Wang, S Li, X Liu, Z Shi, X Fang, J H He. Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): e2003309
https://doi.org/10.1002/adma.202003309 pmid: 33346383
6 Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149 pmid: 25086602
7 W Xu, Q Hu, S Bai, C Bao, Y Miao, Z Yuan, T Borzda, A J Barker, E Tyukalova, Z Hu, M Kawecki, H Wang, Z Yan, X Liu, X Shi, K Uvdal, M Fahlman, W Zhang, M Duchamp, J M Liu, A Petrozza, J Wang, L M Liu, W Huang, F Gao. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
https://doi.org/10.1038/s41566-019-0390-x
8 J Luo, X Wang, S Li, J Liu, Y Guo, G Niu, L Yao, Y Fu, L Gao, Q Dong, C Zhao, M Leng, F Ma, W Liang, L Wang, S Jin, J Han, L Zhang, J Etheridge, J Wang, Y Yan, E H Sargent, J Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
https://doi.org/10.1038/s41586-018-0691-0 pmid: 30405238
9 C Yan, K Lin, J Lu, Z Wei. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13(3): 282–290
https://doi.org/10.1007/s12200-020-1046-7
10 J Huang, Y Yuan, Y Shao, Y Yan. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews. Materials, 2017, 2(7): 17042
https://doi.org/10.1038/natrevmats.2017.42
11 Z Xiao, Y Yan. Progress in theoretical study of metal halide perovskite solar cell materials. Energy Materials, 2017, 7(22): 1701136
https://doi.org/10.1002/aenm.201701136
12 W J Yin, T Shi, Y Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27): 4653–4658
https://doi.org/10.1002/adma.201306281 pmid: 24827122
13 W Meng, X Wang, Z Xiao, J Wang, D B Mitzi, Y Yan. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. Journal of Physical Chemistry Letters, 2017, 8(13): 2999–3007
https://doi.org/10.1021/acs.jpclett.7b01042 pmid: 28604009
14 P Umari, E Mosconi, F De Angelis. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Scientific Reports, 2014, 4(1): 4467
https://doi.org/10.1038/srep04467 pmid: 24667758
15 M A Green, Y Jiang, A M Soufiani, A Ho-Baillie. Optical properties of photovoltaic organic-inorganic lead halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(23): 4774–4785
https://doi.org/10.1021/acs.jpclett.5b01865 pmid: 26560862
16 S D Stranks, G E Eperon, G Grancini, C Menelaou, M J P Alcocer, T Leijtens, L M Herz, A Petrozza, H J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
https://doi.org/10.1126/science.1243982 pmid: 24136964
17 W J Yin, T Shi, Y Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104(6): 063903
https://doi.org/10.1063/1.4864778
18 J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
https://doi.org/10.1021/acs.jpclett.6b02800 pmid: 28071911
19 H Huang, M I Bodnarchuk, S V Kershaw, M V Kovalenko, A L Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2017, 2(9): 2071–2083
https://doi.org/10.1021/acsenergylett.7b00547 pmid: 28920080
20 D Meggiolaro, S G Motti, E Mosconi, A J Barker, J Ball, C Andrea Riccardo Perini, F Deschler, A Petrozza, F De Angelis. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
https://doi.org/10.1039/C8EE00124C
21 K Chen, L Li. Ordered structures with functional units as a paradigm of material design. Advanced Materials, 2019, 31(32): e1901115
https://doi.org/10.1002/adma.201901115 pmid: 31199019
22 Z Xiao, W Meng, J Wang, D B Mitzi, Y Yan. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
https://doi.org/10.1039/C6MH00519E
23 C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x pmid: 23834108
24 J Brgoch, A J Lehner, M L Chabinyc, R Seshadri. Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. Journal of Physical Chemistry C, 2014, 118(48): 27721–27727
https://doi.org/10.1021/jp508880y
25 B Saparov, D B Mitzi. Organic-inorganic perovskites: structural versatility for functional materials design. Chemical Reviews, 2016, 116(7): 4558–4596
https://doi.org/10.1021/acs.chemrev.5b00715 pmid: 27040120
26 R F Kahwagi, S T Thornton, B Smith, G I Koleilat. Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13(3): 196–224
https://doi.org/10.1007/s12200-020-1039-6
27 C P Raptopoulou, A Terzis, G A Mousdis, G C Papavassiliou. Preparation, structure and optical properties of [CH3SC(NH2)2]3SnI5, [CH3SC(NH2)2][HSC(NH2)2]SnBr4, (CH3C5H4NCH3)PbBr3, and [C6H5CH2SC(NH2)2]4Pb3I10. Zeitschrift für Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, Biochemie, Biophysik, Biologie, 2002, 57(6): 645–650
https://doi.org/10.1515/znb-2002-0609
28 M I Saidaminov, J Almutlaq, S Sarmah, I Dursun, A A Zhumekenov, R Begum, J Pan, N Cho, O F Mohammed, O M Bakr. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840–845
https://doi.org/10.1021/acsenergylett.6b00396
29 Y Zhang, M I Saidaminov, I Dursun, H Yang, B Murali, E Alarousu, E Yengel, B A Alshankiti, O M Bakr, O F Mohammed. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. Journal of Physical Chemistry Letters, 2017, 8(5): 961–965
https://doi.org/10.1021/acs.jpclett.7b00105 pmid: 28181438
30 H Lin, C Zhou, Y Tian, T Siegrist, B Ma. Low-dimensional organometal halide perovskites. ACS Energy Letters, 2018, 3(1): 54–62
https://doi.org/10.1021/acsenergylett.7b00926 pmid: 30662954
31 M D Smith, B A Connor, H I Karunadasa. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
https://doi.org/10.1021/acs.chemrev.8b00477 pmid: 30689364
32 Z Tan, J Li, C Zhang, Z Li, Q Hu, Z Xiao, T Kamiya, H Hosono, G Niu, E Lifshitz, Y Cheng, J Tang. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
https://doi.org/10.1002/adfm.201801131
33 J Li, Z Tan, M Hu, C Chen, J Luo, S Li, L Gao, Z Xiao, G Niu, J Tang. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
https://doi.org/10.1007/s12200-019-0907-4
34 Z Tan, Y Chu, J Chen, J Li, G Ji, G Niu, L Gao, Z Xiao, J Tang. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: bright luminescence and high anti-water stability. Advanced Materials, 2020, 32(32): e2002443
https://doi.org/10.1002/adma.202002443 pmid: 32596962
35 Z Xiao, Z Song, Y Yan. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Advanced Materials, 2019, 31(47): e1803792
https://doi.org/10.1002/adma.201803792 pmid: 30680809
36 X G G Zhao, D Yang, J C C Ren, Y Sun, Z Xiao, L Zhang. Rational design of halide double perovskites for optoelectronic applications. Joule, 2018, 2(9): 1662–1673
https://doi.org/10.1016/j.joule.2018.06.017
37 A Swarnkar, A R Marshall, E M Sanehira, B D Chernomordik, D T Moore, J A Christians, T Chakrabarti, J M Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
https://doi.org/10.1126/science.aag2700 pmid: 27846497
38 Y Jiang, J Yuan, Y Ni, J Yang, Y Wang, T Jiu, M Yuan, J Chen. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356–1368
https://doi.org/10.1016/j.joule.2018.05.004
39 B Han, B Cai, Q Shan, J Song, J Li, F Zhang, J Chen, T Fang, Q Ji, X Xu, H Zeng. Stable, efficient red perovskite light-emitting diodes by (α,δ)-CsPbI3 phase engineering. Advanced Functional Materials, 2018, 28(47): 1804285
https://doi.org/10.1002/adfm.201804285
40 K Chen, Q Zhong, W Chen, B Sang, Y Wang, T Yang, Y Liu, Y Zhang, H Zhang. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 2019, 29(24): 1900991
https://doi.org/10.1002/adfm.201900991
41 Y Hu, F Bai, X Liu, Q Ji, X Miao, T Qiu, S Zhang. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Letters, 2017, 2(10): 2219–2227
https://doi.org/10.1021/acsenergylett.7b00508
42 P M Woodward. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica. Section B, Structural Science, 1997, 53(1): 32–43
https://doi.org/10.1107/S0108768196010713
43 D Umeyama, L Leppert, B A Connor, M A Manumpil, J B Neaton, H I Karunadasa. Expanded analogs of three-dimensional lead-halide hybrid perovskites. Angewandte Chemie International Edition, 2020, 59(43): 19087–19094
https://doi.org/10.1002/anie.202005012 pmid: 32649785
44 Z Tang, J Guan, A M Guloy. Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations. Journal of Materials Chemistry, 2001, 11(2): 479–482
https://doi.org/10.1039/b007639m
45 C Quarti, G Grancini, E Mosconi, P Bruno, J M Ball, M M Lee, H J Snaith, A Petrozza, F D Angelis. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
https://doi.org/10.1021/jz402589q pmid: 26270700
46 D Cortecchia, S Neutzner, A R Srimath Kandada, E Mosconi, D Meggiolaro, F De Angelis, C Soci, A Petrozza. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
https://doi.org/10.1021/jacs.6b10390 pmid: 28024394
47 O Yaffe, Y Guo, L Z Tan, D A Egger, T Hull, C C Stoumpos, F Zheng, T F Heinz, L Kronik, M G Kanatzidis, J S Owen, A M Rappe, M A Pimenta, L E Brus. Local polar fluctuations in lead halide perovskite crystals. Physical Review Letters, 2017, 118(13): 136001
https://doi.org/10.1103/PhysRevLett.118.136001 pmid: 28409968
48 Z Xiao, W Meng, B Saparov, H S Duan, C Wang, C Feng, W Liao, W Ke, D Zhao, J Wang, D B Mitzi, Y Yan. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density functional theory study. Journal of Physical Chemistry Letters, 2016, 7(7): 1213–1218
https://doi.org/10.1021/acs.jpclett.6b00248 pmid: 26975723
49 M Saba, M Cadelano, D Marongiu, F Chen, V Sarritzu, N Sestu, C Figus, M Aresti, R Piras, A G Lehmann, C Cannas, A Musinu, F Quochi, A Mura, G Bongiovanni. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
https://doi.org/10.1038/ncomms6049 pmid: 25266869
50 J Shi, H Zhang, Y Li, J J Jasieniak, Y Li, H Wu, Y Luo, D Li, Q Meng. Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy & Environmental Science, 2018, 11(6): 1460–1469
https://doi.org/10.1039/C7EE03543H
51 G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169 pmid: 9984901
52 Y Wang, J Lv, L Zhu, Y Ma. Crystal structure prediction via particle-swarm optimization. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(9): 094116
https://doi.org/10.1103/PhysRevB.82.094116
53 Y Wang, J Lv, L Zhu, Y Ma. CALYPSO: a method for crystal structure prediction. Computer Physics Communications, 2012, 183(10): 2063–2070
https://doi.org/10.1016/j.cpc.2012.05.008
54 J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865 pmid: 10062328
55 A Togo, I Tanaka. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108: 1–5
https://doi.org/10.1016/j.scriptamat.2015.07.021
56 Q Zheng. VASP_TDM, , 2016
57 J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118(18): 8207–8215
https://doi.org/10.1063/1.1564060
58 J Heyd, G E Scuseria, M Ernzerhof. Erratum: “Hybrid functionals based on a screened Coulomb potential”. Journal of Chemical Physics, 2006, 124(21): 219906
https://doi.org/10.1063/1.2204597
59 A Fonari, S Stauffer. VASP_RAMAN.PY, , 2013
60 S Matsumoto, M Watanabe, M Akazome. Incrementing Stokes shifts through the formation of 2,2′-biimidazoldiium salts. Organic Letters, 2018, 20(12): 3613–3617
https://doi.org/10.1021/acs.orglett.8b01376 pmid: 29790755
61 K Momma, F Izumi. VESTA : a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41(3): 653–658
https://doi.org/10.1107/S0021889808012016
[1] Supplementary Material Download
[1] Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu. TCNQ-based organic cocrystal integrated red emission and n-type charge transport[J]. Front. Optoelectron., 2022, 15(2): 21-.
[2] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
[3] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[4] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[5] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[6] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[7] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[8] Taotao DING,Yu TIAN,Jiangnan DAI,Changqing CHEN. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors[J]. Front. Optoelectron., 2015, 8(3): 282-288.
[9] Changping CHEN, Xiangliang JIN, Lizhen TANG, Hongjiao YANG, Jun LUO. Simulation analysis of combined UV/blue photodetector in CMOS process by technology computer-aided design[J]. Front Optoelec, 2014, 7(1): 69-73.
[10] Mohammad KARIMI, Kambiz ABEDI, Mahdi ZAVVARI. InAs/GaAs far infrared quantum ring inter-subband photodetector[J]. Front Optoelec, 2014, 7(1): 84-90.
[11] Saeed OLYAEE, Mohammad SOROOSH, Mahdieh IZADPANAH. Transfer matrix modeling of avalanche photodiode[J]. Front Optoelec, 2012, 5(3): 317-321.
[12] Cao MIAO, Hai LU, Dunjun CHEN, Rong ZHANG, Youdou ZHENG. InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices[J]. Front Optoelec Chin, 2009, 2(4): 442-445.
[13] Xianjie LI, Yingbin LIU, Zhen FENG, Fan GUO, Yonglin ZHAO, Run ZHAO, Rui ZHOU, Chen LOU, Shizu ZHANG. AlGaAs/GaAs quantum well infrared photodetector focal plane array based on MOCVD technology[J]. Front Optoelec Chin, 2008, 1(3-4): 313-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed