Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 414-425    https://doi.org/10.1007/s12200-021-1242-0
RESEARCH ARTICLE
Toward coherent O-band data center interconnects
Pascal M. SEILER1,2(), Galina GEORGIEVA3, Georg WINZER2, Anna PECZEK4, Karsten VOIGT1,2, Stefan LISCHKE2, Adel FATEMI2, Lars ZIMMERMANN1,2
1. Technische Universität Berlin, Chair of Siliziumphotonik, Berlin 10623, Germany
2. IHP – Leibniz-Institut für innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
3. Technische Universität Berlin, Chair of Hochfrequenztechnik-Photonik, Berlin 10623, Germany
4. IHP Solutions GmbH, Frankfurt (Oder) 15236, Germany
 Download: PDF(1025 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Upcoming generations of coherent intra/inter data center interconnects currently lack a clear path toward a reduction of cost and power consumption, which are the driving factors for these data links. In this work, the trade-offs associated with a transition from coherent C-band to O-band silicon photonics are addressed and evaluated. The discussion includes the fundamental components of coherent data links, namely the optical components, fiber link and transceivers. As a major component of these links, a monolithic silicon photonic BiCMOS O-band coherent receiver is evaluated for its potential performance and compared to an analogous C-band device.

Keywords coherent communication      data center      O-band      silicon photonics     
Corresponding Author(s): Pascal M. SEILER   
Just Accepted Date: 09 September 2021   Online First Date: 26 October 2021    Issue Date: 06 December 2021
 Cite this article:   
Pascal M. SEILER,Galina GEORGIEVA,Georg WINZER, et al. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1242-0
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/414
Fig.1  (a) Waveguide geometry of a rib waveguide in 220 nm thick silicon-on-insulator (SOI) on a 2 µm SiO2 box. (b) Wafer distribution of the linear loss in the O-band for a rib waveguide. The black markers indicate invalid measurements. BEOL: back end of line. The red dashed box indicates the area for the nonlinear effective area calculation
Fig.2  Coupling efficiencies for (a) C-band, (b) O-band 1D and 2D grating couplers (GRCs). The structures have been fabricated without a BEOL process. (c) Schematics of the measured structures
Fig.3  (a) Differential multi-mode interference (MMI) imbalance. (b) MMI phase error relative to output 1. The dashed lines in (a) and (b) account for typical fabrication tolerances. (c) Schematic of the MMI. i: input; o: output
Fig.4  Simulated filter (a) complexity and (b) power consumption of CD compensation for different symbol rates and wavelengths at a targeted link distance of 20 km. Only one link distance is investigated due to the symbol rate being the dominant factor in the filter complexity
variable value
modulation format DP-QAM-16
nominal ADC resolution nadc 4 [43]
DSP resolution nadc + 2 [40]
oversampling factor n os 1.25 [43]
fiber length 20 km
wavelength λ 1260 nm 1310 nm 1550 nm
fiber dispersion coefficient D −5 ps/(nm ?km)a) −0.7 ps/(nm ?km)a) 17 ps/(nm? km)
CMOS process
technology feature size
7 nm
CMOS supply voltage 0.8 V [40]
Tab.1  CD compensation simulation parameters
Fig.5  (a) Intradyne setup for back-to-back and transmission experiment. A local oscillator power of +12 dBm has been maintained. (b) Bit error rate (BER) vs. optical signal to noise ratio (OSNR) for measured 56 GBd QPSK (B2B) using a dedicated O- and C-band receiver and in theory. Also shown is the BER vs. OSNR for 48 GBd QPSK using the O-band receiver and in theory. (c) BER vs. received optical power for 56 GBd QPSK at different link distances using an O-band receiver. The margins indicate the total remaining power budget. ECL: external cavity laser; PC: polarization controller; IQ Mod: IQ modulator; AWG: arbitrary waveform generator; VOA: variable optical attenuator; SMF: single mode fiber; OSA: optical spectrum analyzer; RTO: real time oscilloscope
component loss/dB
1310 nm (1310±20) nm 1550 nm (1550±20) nm
grating coupler 4.1a) <6.7a) 4.3 <7.2
waveguide 0.2
MMI 0.3 <1 0.3 <1
crossing 0.4
total 5 <8.3 5.2 <8.8
Tab.2  O- and C-band loss per component
1 X Zhou, R Urata, H Liu. Beyond 1Tb/s datacenter interconnect technology: challenges and solutions. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
2 R Urata, H Liu, X Zhou, A Vahdat. Datacenter interconnect and networking: from evolution to holistic revolution. In: Proceedings of Optical Fiber Communication Conference (OFC). Los Angeles: IEEE, 2017
3 M H Eiselt, A Dochhan, J P Elbers. Data center interconnects at 400G and beyond. In: Proceedings of 23rd Opto-Electronics and Communications Conference (OECC). Jeju: IEEE, 2018
4 M Morsy-Osman, D V Plant. A comparative study of technology options for next generation intra- and inter-datacenter interconnects. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2018
5 E Maniloff, S Gareau, M Moyer. 400G and beyond: coherent evolution to high-capacity inter data center links. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
6 C L Schow, K Schmidtke. INTREPID: developing power efficient analog coherent interconnects to transform data center networks. In: Proceedings of Optical Fiber Communication Conference (OFC). San Dieo: IEEE, 2019
7 J K Perin, A Shastri, J M Kahn. Design of low-power DSP-free coherent receivers for data center links. Journal of Lightwave Technology, 2017, 35(21): 4650–4662
https://doi.org/10.1109/JLT.2017.2752079
8 P M Seiler, A Peczek, G Winzer, K Voigt, S Lischke, A Fatemi, L Zimmermann. 56 GBaud O-band transmission using a photonic BiCMOS coherent receiver. In: Proceedings of European Conference on Optical Communications (ECOC). Brussels: IEEE, 2020
9 D Knoll, S Lischke, R Barth, L Zimmermann, B Heinemann, H Rucker, C Mai, M Kroh, A Peczek, A Awny, C Ulusoy, A Trusch, A Kruger, J Drews, M Fraschke, D Schmidt, M Lisker, K Voigt, E Krune, A Mai. High-performance photonic BiCMOS process for the fabrication of high-bandwidth electronic-photonic integrated circuits. In: Proceedings of IEEE International Electron Devices Meeting (IEDM). Washington: IEEE, 2015
10 S Lischke, D Knoll, C Mai, L Zimmermann. Advanced photonic BiCMOS technology with high-performance Ge photo detectors. In: Proceedings of SPIE 11088, Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019. San Diego: SPIE, 2019
11 L Vivien, L Pavesi. Handbook of Silicon Photonics. Boca Raton: Taylor & Francis, 2013
12 T K Liang, H K Tsang. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Applied Physics Letters, 2004, 84(15): 2745–2747
https://doi.org/10.1063/1.1702133
13 S K Selvaraja, W Bogaerts, D V Thourhout. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement. Optics Communications, 2011, 284(8): 2141–2144
https://doi.org/10.1016/j.optcom.2010.12.086
14 A Peczek, C Mai, G Winzer, L Zimmermann. Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization. In: Proceedings of IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS). Edinburgh: IEEE, 2020
15 J K Perin, A Shastri, J M Kahn. Coherent data center links. Journal of Lightwave Technology, 2021, 39(3): 730–741
https://doi.org/10.1109/JLT.2020.3043951
16 C Koos, L Jacome, C Poulton, J Leuthold, W Freude. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Optics Express, 2007, 15(10): 5976–5990
https://doi.org/10.1364/OE.15.005976 pmid: 19546900
17 M Dinu. Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE Journal of Quantum Electronics, 2003, 39(11): 1498–1503
https://doi.org/10.1109/JQE.2003.818277
18 A Gajda. Four wave mixing at 1550 nm in silicon waveguides, Dissertation for the Doctoral Degree. Berlin: Technische Universität Berlin, 2017
19 S Kupijai, H Rhee, A Al-Saadi, M Henniges, D Bronzi, D Selicke, C Theiss, S Otte, H J Eichler, U Woggon, D Stolarek, H H Richter, L Zimmermann, B Tillack, S Meister. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. Journal of Lightwave Technology, 2016, 34(12): 2920–2923
https://doi.org/10.1109/JLT.2015.2489840
20 T Pinguet, S Denton, S Gloeckner, M Mack, G Masini, A Mekis, S Pang, M Peterson, S Sahni, P D Dobbelaere. High-volume manufacturing platform for silicon photonics. Proceedings of the IEEE, 2018, 106(12): 2281–2290
https://doi.org/10.1109/JPROC.2018.2859198
21 F Boeuf, S Cremer, N Vulliet, T Pinguet, A Mekis, G Masini, L Verslegers, P Sun, A Ayazi, N K Hon, S Sahni, Y Chi, B Orlando, D Ristoiu, A Farcy, F Leverd, L Broussous, D Pelissier-Tanon, C Richard, L Pinzelli, R Beneyton, O Gourhant, E Gourvest, Y Le-Friec, D Monnier, P Brun, M Guillermet, D Benoit, K Haxaire, J R Manouvrier, S Jan, H Petiton, J F Carpentier, T Quemerais, C Durand, D Gloria, M Fourel, F Battegay, Y Sanchez, E Batail, F Baron, P Delpech, L Salager, P D Dobbelaere, B Sautreuil. A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25 Gb/s applications. In: Proceedings of IEEE International Electron Devices Meeting. Washington: IEEE, 2013
22 C Lacava, L Carrol, A Bozzola, R Marchetti, P Minzioni, I Cristiani, M Fournier, S Bernabe, D Gerace, L C Andreani. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits. In: Proceedings of SPIE 9752, Silicon Photonics XI. San Francisco: SPIE, 2016
23 Y Luo, Z Nong, S Gao, H Huang, Y Zhu, L Liu, L Zhou, J Xu, L Liu, S Yu, X Cai. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Optics Letters, 2018, 43(3): 474–477
https://doi.org/10.1364/OL.43.000474 pmid: 29400818
24 L Verslegers, A Mekis, T Pinguet, Y Chi, G Masini, P Sun, A Ayazi, K Y Hon, S Sahni, S Gloeckner, C Baudot, F Boeuf, P D Dobbelaere. Design of low-loss polarization splitting grating couplers. In: Proceedings of Advanced Photonics for Communications. San Diego: IEEE, 2014
25 B Snyder, G Lepage, S Balakrishnan, P D Heyn, P Verheyen, P Absil, J V Campenhout. Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics. In: Proceedings of IEEE CPMT Symposium Japan (ICSJ). Kyoto: IEEE, 2017
26 M J Picard, C Latrasse, C Larouche, Y Painchaud, M Poulin, F Pelletier, M Guy. CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment. In: Proceedings of SPIE 9752, Silicon Photonics XI. San Francisco: SPIE, 2016
27 T Barwicz, B Peng, R Leidy, A Janta-Polczynski, T Houghton, M Khater, S Kamlapurkar, S Engelmann, P Fortier, N Boyer, W M J Green. Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1–13
https://doi.org/10.1109/JSTQE.2018.2879018
28 T Barwicz, A Janta-Polczynski, S Takenobu, K Watanabe, R Langlois, Y Taira, K Suematsu, H Numata, B Peng, S Kamlapurkar, S Engelmann, P Fortier, N Boyer. Advances in interfacing optical fibers to nanophotonic waveguides via mechanically compliant polymer waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1–12
https://doi.org/10.1109/JSTQE.2020.2964383 pmid: 33154613
29 R Marchetti, C Lacava, L Carroll, K Gradkowski, P Minzioni. Coupling strategies for silicon photonics integrated chips. Photonics Research, 2019, 7(2): 201–239
https://doi.org/10.1364/PRJ.7.000201
30 G Georgieva, K Voigt, C Mai, P M Seiler, K Petermann, L Zimmermann. Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology. Japanese Journal of Applied Physics, 2020, 59: SOOB03
31 R Kunkel, H G Bach, D Hoffmann, C M Weinert, I Molina-Fernandez, R Halir. First monolithic InP-based 90°-hybrid OEIC comprising balanced detectors for 100GE coherent frontends. In: Proceedings of IEEE International Conference on Indium Phosphide & Related Materials. Newport Beach: IEEE, 2009
32 K Voigt, L Zimmermann, G Winzer, H Tian, B Tillack, K Petermann. C-band optical 90° hybrids in silicon nanowaveguide technology. IEEE Photonics Technology Letters, 2011, 23(23): 1769–1771
https://doi.org/10.1109/LPT.2011.2165703
33 R Halir, G Roelkens, A Ortega-Moñux, J G Wangüemert-Pérez. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler. Optics Letters, 2011, 36(2): 178–180
https://doi.org/10.1364/OL.36.000178 pmid: 21263492
34 W Yang, M Yin, Y Li, X Wang, Z Wang. Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator. Optics Express, 2013, 21(23): 28423–28431
https://doi.org/10.1364/OE.21.028423 pmid: 24514353
35 H Guan, Y Ma, R Shi, X Zhu, R Younce, Y Chen, J Roman, N Ophir, Y Liu, R Ding, T Baehr-Jones, K Bergman, M Hochberg. Compact and low loss 90° optical hybrid on a silicon-on-insulator platform. Optics Express, 2017, 25(23): 28957–28968
https://doi.org/10.1364/OE.25.028957
36 K Voigt, C Mai, D Petousi, A Peczek, D Knoll, S Lischke, G Winzer, L Zimmermann. Optical transmitter design in a SiGe BiCMOS photonic platform. In: Proceedings of Asia Communications and Photonics Conference (ACP). Chengdu: IEEE, 2019
37 Corning Incorporated. Corning SMF-28 ultra optical fiber product information. Available: . Accessed on: Feb. 20, 2021
38 International Telecommunication Union. ITU-T G.652 (11/2016) Series G: transmission systems and media, digital systems and networks. 2016. Available: . Accessed on: Jan. 5, 2021
39 B Spinnler. Equalizer design and complexity for digital coherent receivers. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1180–1192
https://doi.org/10.1109/JSTQE.2009.2035931
40 B S G Pillai, B Sedighi, K Guan, N P Anthapadmanabhan, W Shieh, K J Hinton, R S Tucker. End-to-end energy modeling and analysis of long-haul coherent transmission systems. Journal of Lightwave Technology, 2014, 32(18): 3093–3111
https://doi.org/10.1109/JLT.2014.2331086
41 R Nagarajan, I Lyubomirsky. Low-complexity DSP for inter-data center optical fiber communications. In: Proceedings of European Conference on Optical Communications (ECOC). Brussels: IEEE, 2020
42 M Morsy-Osman, M Sowailem, E El-Fiky, T Goodwill, T Hoang, S Lessard, D V Plant. DSP-free ‘coherent-lite’ transceiver for next generation single wavelength optical intra-datacenter interconnects. Optics Express, 2018, 26(7): 8890–8903
https://doi.org/10.1364/OE.26.008890 pmid: 29715850
43 J K Perin, A Shastri, J M Kahn. Data center links beyond 100 Gbit/s per wavelength. Optical Fiber Technology, 2018, 44: 69–85
https://doi.org/10.1016/j.yofte.2017.12.006
44 J Witzens. High-speed silicon photonics modulators. Proceedings of the IEEE, 2018, 106(12): 2158–2182
https://doi.org/10.1109/JPROC.2018.2877636
45 D Petousi. Analysis of Integrated Silicon Depletion-Type Mach-Zehnder Modulators for Advanced Modulation Formats. Berlin: Mensch & Buch Verlag, 2017
46 B Milivojevic, C Raabe, A Shastri, M Webster, P Metz, S Sunder, B Chattin, S Wiese, B Dama, K Shastri. 112Gb/s DP-QPSK transmission over 2427 km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Anaheim: IEEE, 2013
47 P Dong, X Liu, S Chandrasekhar, L L Buhl, R Aroca, Y K Chen. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 150–157
https://doi.org/10.1109/JSTQE.2013.2295181
48 J Lin, H Sepehrian, L A Rusch, W Shi. CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2018
49 J Zhou, J Wang, Q Zhang. Silicon photonics for 100Gbaud. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2020
50 S Zhalehpour, J Lin, M Guo, H Sepehrian, Z Zhang, L A Rusch, W Shi. All-silicon IQ modulator for 100 GBaud 32QAM transmissions. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
51 A Melikyan, N Kaneda, K Kim, Y Baeyens, P Dong. Differential drive I/Q modulator based on silicon photonic electro-absorption modulators. Journal of Lightwave Technology, 2020, 38(11): 2872–2876
https://doi.org/10.1109/JLT.2020.2978190
52 C Doerr, L Chen, T Nielsen, R Aroca, L Chen, M Banaee, S Azemati, G McBrien, S Y Park, J Geyer, B Guan, B Mikkelsen, C Rasmussen, M Givehchi, Z Wang, B Potsaid, H C Lee, E Swanson, J G Fujimoto. O, E, S, C, and L band silicon photonics coherent modulator/receiver. In: Proceedings of Optical Fiber Communication Conference (OFC). Anaheim: IEEE, 2016
53 A Samani, E El-Fiky, M Osman, D Patel, R Li, M Jacques, D Plant. 180 Gb/s single carrier single polarization 16-QAM transmission using an O-band silicon photonic IQM. Optics Express, 2019, 27(10): 14447–14456
https://doi.org/10.1364/OE.27.014447 pmid: 31163894
54 G R Mehrpoor, C Schmidt-Langhorst, B Wohlfeil, R Elschner, D Rafique, R Emmerich, A Dochhan, I Lopez, P Rito, D Petousi, D Kissinger, L Zimmermann, C Schubert, B Schmauss, M Eiselt, J P Elbers. 64-GBd DP-bipolar-8ASK transmission over 120 km SSMF employing a monolithically integrated driver and MZM in 0.25-µm SiGe BiCMOS technology. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2009
55 Z Zhou, R Chen, X Li, T Li. Development trends in silicon photonics for data centers. Optical Fiber Technology, 2018, 44: 13–23
https://doi.org/10.1016/j.yofte.2018.03.009
56 A Rahim, A Hermans, B Wohlfeil, D Petousi, B Kuyken, D V Thourhout, R Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Advanced Photonics, 2021, 3(2): 024003
https://doi.org/10.1117/1.AP.3.2.024003
57 Z Tu, P Gong, Z Zhou, X Wang. Ultracompact 100 Gbps coherent receiver monolithically integrated on silicon. Japanese Journal of Applied Physics, 2016, 55(4S): 04EC04
https://doi.org/10.7567/JJAP.55.04EC04
58 M Kroh, G Unterbörsch, G Tsianos, R Ziegler, A G Steffan, H G Bach, J Kreissl, R Kunkel, G G Mekonnen, W Rehbein, D Schmidt, R Ludwig, K Petermann, J Bruns, T Mitze, K Voigt, L Zimmermann. Hybrid integrated 40 Gb/s DPSK receiver on SOI. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: IEEE, 2009
59 G Winzer, M Kroh, S Lischke, D Knoll, K Voigt, H Tian, C Mai, D Petousi, D Micusik, L Zimmermann, B Tillack, K Petermann. Monolithic photonic-electronic QPSK receiver for 28Gbaud. In: Proceedings of Optical Fiber Communication Conference (OFC). Los Angeles: IEEE, 2015
60 C Doerr, L Chen, D Vermeulen, T Nielsen, S Azemati, S Stulz, G McBrien, X M Xu, B Mikkelsen, M Givehchi, C Rasmussen, S Y Park. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference (OFC). San Francisco: IEEE, 2014
61 J Verbist, J Zhang, B Moeneclaey, W Soenen, J V Weerdenburg, R V Uden, C Okonkwo, J Bauwelinck, G Roelkens, X Yin. A 40-GBd QPSK/16-QAM integrated silicon coherent receiver. IEEE Photonics Technology Letters, 2016, 28(19): 2070–2073
https://doi.org/10.1109/LPT.2016.2582799
62 P Dong, X Liu, S Chandrasekhar, L L Buhl, R Aroca, Y Baeyens, Y K Chen. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Anaheim: IEEE, 2013
63 C R Doerr, P J Winzer, S Chandrasekhar, M Rasras, M Earnshaw, J Weiner, D M Gill, Y K Chen. Monolithic silicon coherent receiver. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: IEEE, 2009
64 S Gudyriev, C Kress, H Zwickel, J N Kemal, S Lischke, L Zimmermann, C Koos, J C Scheytt. Coherent ePIC receiver for 64 GBaud QPSK in 0.25 μm photonic BiCMOS technology. Journal of Lightwave Technology, 2019, 37(1): 103–109
https://doi.org/10.1109/JLT.2018.2881107
65 A Awny, R Nagulapalli, M Kroh, J Hoffmann, P Runge, D Micusik, G Fischer, A C Ulusoy, M Ko, D Kissinger. A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 973–986
https://doi.org/10.1109/TMTT.2017.2752170
66 P Doussiere, C L Shieh, S DeMars, K Dzurko. Very high power 1310 nm InP single mode distributed feedback laser diode with reduced linewidth. In: Proceedings of SPIE 6485, Novel In-Plane Semiconductor Lasers VI. San Jose: SPIE, 2007
67 C L Schow. Low power analog coherent links for next-generation datacenters. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2019
[1] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[2] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[3] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[4] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[5] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[6] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[7] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[8] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[9] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[10] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[11] Hao RUAN. Recent advances in holographic data storage[J]. Front. Optoelectron., 2014, 7(4): 450-466.
[12] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[13] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[14] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed