Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (1) : 13    https://doi.org/10.1007/s12200-022-00005-8
RESEARCH ARTICLE
Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line
Galina Georgieva1(), Christian Mai2, Pascal M. Seiler1,2, Anna Peczek3, Lars Zimmermann1,2
1. Hochfrequenztechnik-Photonik/Siliziumphotonik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
2. IHP—Leibnitz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
3. IHP Solutions GmbH, Im Technologiepark 7, 15236 Frankfurt (Oder), Germany
 Download: PDF(1853 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we report on polarization combining two-dimensional grating couplers (2D GCs) on amorphous Si:H, fabricated in the backend of line of a photonic BiCMOS platform. The 2D GCs can be used as an interface of a hybrid silicon photonic coherent transmitter, which can be implemented on bulk Si wafers. The fabricated 2D GCs operate in the telecom C-band and show an experimental coupling efficiency of − 5 dB with a wafer variation of ± 1.2 dB. Possibilities for efficiency enhancement and improved performance stability in future design generations are outlined and extension toward O-band devices is also investigated.

Keywords Hybrid integration      Photonic BiCMOS      Amorphous silicon      Two-dimensional grating coupler (2D GC)      Dual-polarization coherent communication      Silicon photonics     
Corresponding Author(s): Galina Georgieva   
Issue Date: 06 May 2022
 Cite this article:   
Galina Georgieva,Christian Mai,Pascal M. Seiler, et al. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00005-8
https://academic.hep.com.cn/foe/EN/Y2022/V15/I1/13
1 X. Zhou, , R. Urata, , H. Liu, : Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent? J. Lightwave Technol. 38 (2), 475- 484 (2020)
2 NeoPhotonics . White Paper—Photonic IC Enabled Coherent Optical Systems
3 J. Zhou, , J. Wang, , L. Zhu, , Q. Zhang, : Silicon photonics for 100 Gbaud. J. Lightwave Technol. 39 (4), 857- 867 (2021)
4 A. Mekis, , S. Gloeckner, , G. Masini, , A. Narasimha, , T. Pinguet, , S. Sahni, , P.D. Dobbelaere, : A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 17 (3), 597- 608 (2011)
5 L. Zimmermann, , D. Knoll, , M. Kroh, , S. Lischke, , D. Petousi, , G. Winzer, , Y. Yamamoto, : BiCMOS silicon photonics platform. In: Optical Fiber Communication Conference (OFC) 2015, Los Angeles, CA, USA (2015)
6 M. Rakowski, , C. Meagher, , K. Nummy, , A. Aboketaf, , J. Ayala, , Y. Bian, , B. Harris, , K. Mclean, , K. McStay, , A. Sahin, , L. Medina, , B. Peng, , Z. Sowinski, , A. Stricker, , T. Houghton, , C. Hedges, , K. Giewont, , A. Jacob, , T. Letavic, , D. Riggs, , A. Yu, , J. Pellerin, : 45 nm CMOS-silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects. In: Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA (2020)
7 X. Zhou, , R. Urata, , H. Liu, : Beyond 1 Tb/s datacenter interconnect technology: challenges and solutions. In: Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA (2019)
8 D. Petousi, , L. Zimmermann, , K. Voigt, , K. Petermann, : Performance limits of depletion-type silicon Mach-Zehnder modulators for telecom applications. J. Lightwave Technol. 31 (22), 3556- 3562 (2013)
9 D. Petousi, , L. Zimmermann, , A. Gajda, , M. Kroh, , K. Voigt, , G. Winzer, , B. Tillack, , K. Petermann, : Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation. IEEE J. Sel. Top. Quantum Electron. 21 (4), 199- 206 (2015)
10 K. Alexander, , J.P. George, , J. Verbist, , K. Neyts, , B. Kuyken, , D. Van Thourhout, , J. Beeckman, : Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9 (1), 3444 (2018)
11 F. Eltes, , C. Mai, , D. Caimi, , M. Kroh, , Y. Popoff, , G. Winzer, , D. Petousi, , S. Lischke, , J.E. Ortmann, , L. Czornomaz, , L. Zimmermann, , J. Fompeyrine, , S. Abel, : A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol. 37 (5), 1456- 1462 (2019)
12 A. Rao, , A. Patil, , P. Rabiei, , A. Honardoost, , R. DeSalvo, , A. Paolella, , S. Fathpour, : High-performance and linear thinfilm lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41 (24), 5700- 5703 (2016)
13 P.O. Weigel, , J. Zhao, , K. Fang, , H. Al-Rubaye, , D. Trotter, , D. Hood, , J. Mudrick, , C. Dallo, , A.T. Pomerene, , A.L. Starbuck, , C.T. DeRose, , A.L. Lentine, , G. Rebeiz, , S. Mookherjea, : Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26 (18), 23728- 23739 (2018)
14 N. Boynton, , H. Cai, , M. Gehl, , S. Arterburn, , C. Dallo, , A. Pomerene, , A. Starbuck, , D. Hood, , D.C. Trotter, , T. Friedmann, , C.T. DeRose, , A. Lentine, : A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express 28 (2), 1868- 1884 (2020)
15 R. Takei, , Y. Maegami, , E. Omoda, , Y. Sakakibara, , M. Mori, , T. Kamei, : Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics. Opt. Express 23 (14), 18602- 18610 (2015)
16 R. Takei, , S. Manako, , E. Omoda, , Y. Sakakibara, , M. Mori, , T. Kamei, : Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect. Opt. Express 22 (4), 4779- 4788 (2014)
17 N. Sherwood-Droz, , M. Lipson, : Scalable 3D dense integration of photonics on bulk silicon. Opt. Express 19 (18), 17758- 17765 (2011)
18 E.W. Ong, , N.M. Fahrenkopf, , D.D. Coolbaugh, : SiNx bilayer grating coupler for photonic systems. OSA Continuum 1 (1), 13- 25 (2018)
19 S. Zhu, , G.Q. Lo, : Vertically stacked multilayer photonics on Bulk silicon toward three-dimensional integration. J. Lightwave Technol. 34 (2), 386- 392 (2016)
20 J.H. Kang, , Y. Atsumi, , Y. Hayashi, , J. Suzuki, , Y. Kuno, , T. Amemiya, , N. Nishiyama, , S. Arai, : Amorphous-silicon interlayer grating couplers with metal mirrors toward 3-D interconnection. IEEE J. Sel. Top. Quantum Electron. 20 (4), 317- 322 (2014)
21 R. Takei, : Amorphous silicon photonics. In: Crystalline and noncrystalline solids, InTech, 2016. https://doi.org/10.5772/63374
22 D. Knoll, , S. Lischke, , R. Barth, , L. Zimmermann, , B. Heinemann, , H. Rucker, , C. Mai, , M. Kroh, , A. Peczek, , A. Awny, , C. Ulusoy, , A. Trusch, , A. Kruger, , J. Drews, , M. Fraschke, , D. Schmidt, , M. Lisker, , K. Voigt, , E. Krune, , A. Mai, : High-performance photonic BiCMOS process for the fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA (2015)
23 D. Knoll, , S. Lischke, , A. Awny, , M. Kroh, , E. Krune, , C. Mai, , A. Peczek, , D. Petousi, , S. Simon, , K. Voigt, , G. Winzer, , L. Zimmermann, : BiCMOS silicon photonics platform for fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA (2016)
24 R. Marchetti, , C. Lacava, , L. Carroll, , K. Gradkowski, , P. Minzioni, : Coupling strategies for silicon photonics integrated chips. Photon. Res. 7 (2), 201- 239 (2019)
25 T. Mitze, , M. Schnarrenberger, , L. Zimmermann, , J. Bruns, , F. Fidorra, , K. Janiak, , J. Kreissl, , S. Fidorra, , H. Heidrich, , K. Petermann, : CWDM transmitter module based on hybrid integration. IEEE J. Sel. Top. Quantum Electron. 12 (5), 983- 987 (2006)
26 H. Duprez, , A. Descos, , T. Ferrotti, , C. Sciancalepore, , C. Jany, , K. Hassan, , C. Seassal, , S. Menezo, , B.B. Ben, : 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high sidemode suppression ratio. Opt. Express 23 (7), 8489- 8497 (2015)
27 D. Shin, , J. Cha, , S. Kim, , Y. Shin, , K. Cho, , K. Ha, , G. Jeong, , H. Hong, , K. Lee, , H.K. Kang, : O-band DFB laser heterogeneously integrated on a bulk-silicon platform. Opt. Express 26 (11), 14768- 14774 (2018)
28 G. Georgieva, , K. Petermann, : Analytical and numerical investigation of silicon photonic 2D grating couplers with a waveguidetograting shear angle. In: 2018 Progress in Electromagnetics Research Symposium (PIERS), Toyama, Japan (2018)
29 G. Georgieva, , K. Voigt, , C. Mai, , P.M. Seiler, , K. Petermann, , L. Zimmermann, : Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology. Jpn. J. Appl. Phys. 59, SOOB03 (2020)
30 G. Georgieva, , K. Voigt, , P.M. Seiler, , C. Mai, , K. Petermann, , L. Zimmermann, : A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations. J. Phys. 3 (3), 035002 (2021)
31 G. Georgieva, , P. M. Seiler, , C. Mai, , K. Petermann, , L. Zimmermann, : 2D grating coupler induced polarization crosstalk in coherent transceivers for next generation data center interconnects. In: The Optical Fiber Communication Conference (OFC) (2021)
32 P.M. Seiler, , G. Georgieva, , G. Winzer, , A. Peczek, , K. Voigt, , S. Lischke, , A. Fatemi, , L. Zimmermann, : Toward coherent O-band data center interconnects. Frontiers of Optoelectronics 14 (4), 414- 425 (2021)
33 L. Carroll, , D. Gerace, , I. Cristiani, , S. Menezo, , L.C. Andreani, : Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics. Opt. Express 21 (18), 21556- 21568 (2013)
34 Y. Luo, , Z. Nong, , S. Gao, , H. Huang, , Y. Zhu, , L. Liu, , L. Zhou, , J. Xu, , L. Liu, , S. Yu, , X. Cai, : Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett. 43 (3), 474- 477 (2018)
35 A. Peczek, , C. Mai, , G. Winzer, , L. Zimmermann, : Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization. In: 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS), Edinburgh, UK (2020)
[1] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[2] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[3] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[4] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[5] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[6] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[7] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[8] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[9] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[10] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[11] Shuxin LI, Yunjun RUI, Yunqing CAO, Jun XU, Kunji CHEN. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films[J]. Front Optoelec, 2012, 5(1): 107-111.
[12] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[13] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[14] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed