Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (1) : 9    https://doi.org/10.1007/s12200-022-00012-9
REVIEW ARTICLE
Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review
Shengping Liu, Junbo Feng(), Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo
Chongqing United Microelectronics Center, Chongqing 401332, China
 Download: PDF(3575 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicon photonic platforms offer relevance to large markets in many applications, such as optical phased arrays, photonic neural networks, programmable photonic integrated circuits, and quantum computation devices. As one of the basic tuning devices, the thermo-optic phase shifter (TOPS) plays an important role in all these applications. A TOPS with the merits of easy fabrication, low power consumption, small thermal time constant, low insertion loss, small footprint, and low crosstalk, is needed to improve the performance and lower the cost of the above applications. To meet these demands, various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper, we review the state-of-the-art of TOPS, including metal heater, doped silicon, silicide, with silicon substrate undercut for heat insulation, folded waveguide structure, and multi-pass waveguide structure. We further compare these TOPSs and propose the directions of the future developments on TOPS.

Keywords Thermo-optic phase shifter      Photonic integrated circuits (PICs)      Optical switches      Silicon photonics     
Corresponding Author(s): Junbo Feng   
Issue Date: 06 May 2022
 Cite this article:   
Shengping Liu,Junbo Feng,Ye Tian, et al. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00012-9
https://academic.hep.com.cn/foe/EN/Y2022/V15/I1/9
1 Y. Su,, Y. Zhang,, C. Qiu,, X. Guo,, L. Sun,: Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol. 5(8), 1901153 (2020)
https://doi.org/10.1002/admt.201901153
2 A. Rahim,, T. Spuesens,, R. Baets,, W. Bogaerts,: Open-access silicon photonics: current status and emerging initiatives. In: Proceedings of the IEEE, pp. 2313–2330. (2018)
https://doi.org/10.1109/JPROC.2018.2878686
3 A. Rahim,, J. Goyvaerts,, B. Szelag,, J.-M. Fedeli,, P. Absil,, T. Aalto,, M. Harjanne,, C. Littlejohns,, G. Reed,, G. Winzer,, S. Lischke,, L. Zimmermann,, D. Knoll,, D. Geuzebroek,, A. Leinse,, M. Geiselmann,, M. Zervas,, H. Jans,, A. Stassen,, C. Domínguez,, P. Muñoz,, D. Domenech,, A. Lena,, M.C. Lemme,, R. Baets,: Open-access silicon photonics platforms in europe. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–18 (2019)
https://doi.org/10.1109/JSTQE.2019.2915949
4 Y. Shen,, N.C. Harris,, S. Skirlo,, M. Prabhu,, T. Baehr-Jones,, M. Hochberg,, X. Sun,, S. Zhao,, H. Larochelle,, D. Englund,, M. Soljačić,: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11(7), 441–446 (2017)
https://doi.org/10.1038/nphoton.2017.93
5 W. Bogaerts,, A. Rahim,: Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. (2020)
https://doi.org/10.1109/JSTQE.2020.2982980
6 R. Baghdadi,, M. Gould,, S. Gupta,, M. Tymchenko,, D. Bunandar,, C. Ramey,, N.C. Harris,: Dual slot-mode NOEM phase shifter. Opt. Express 29(12), 19113–19119 (2021)
https://doi.org/10.1364/OE.423949
7 G. Kang,, S.H. Kim,, J.B. You,, D.S. Lee,, H. Yoo,, Y.G. Ha,, J.H. Kim,, D.E. Yoo,, D.W. Lee,, C.H. Youn,, K. Yu,: Silicon-based optical phased array using electro-optic p-i-n phase shifters. IEEE Photonics Technol. Lett. 31, 1685–1688 (2019)
https://doi.org/10.1109/LPT.2019.2939550
8 N. Quack,, H. Sattari,, A.Y. Takabayashi,, Y. Zhang,, P. Verheyen,, W. Bogaerts,, P. Edinger,, C. Errando-Herranz,, K.B. Gylfason,: MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56(1), 1–10 (2020)
https://doi.org/10.1109/JQE.2019.2946841
9 T. Yamashita,, S. Kim,, H. Kato,, W. Qiu,, K. Semba,, A. Fujimaki,, H. Terai,: π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate. Sci. Rep. 10(1), 13687 (2020)
https://doi.org/10.1038/s41598-020-70766-9
10 A. Landry,, T.V. Son,, A. Haché,: Optical modulation at the interface between silicon and a phase change material. Optik (Stuttgart) 209(6), 164585 (2020)
https://doi.org/10.1016/j.ijleo.2020.164585
11 C. Kieninger,, C. Füllner,, H. Zwickel,, Y. Kutuvantavida,, J.N. Kemal,, C. Eschenbaum,, D.L. Elder,, L.R. Dalton,, W. Freude,, S. Randel,, C. Koos,: Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express 28(17), 24693–24707 (2020)
https://doi.org/10.1364/OE.390315
12 Y. Xie,, Y. Shi,, L. Liu,, J. Wang,, R. Priti,, G. Zhang,, O. Liboiron-Ladouceur,, D. Dai,: Thermally-reconfigurable silicon photonic devices and circuits. IEEE J. Sel. Top. Quantum Electron. 26(5), 1–20 (2020)
https://doi.org/10.1109/JSTQE.2020.3002758
13 L. Qiao,, W. Tang,, T. Chu,: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7(1), 42306 (2017)
https://doi.org/10.1038/srep42306
14 P. Edinger,, C. Errando-Herranz,, K.B. Gylfason,: Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE (2019)
https://doi.org/10.1109/MEMSYS.2019.8870616
15 M. Jacques,, A. Samani,, E. El-Fiky,, D. Patel,, Z. Xing,, D.V. Plant,: Optimization of thermo-optic phase-shifter design and miti-gation of thermal crosstalk on the SOI platform. Opt. Express 27(8), 10456–10471 (2019)
https://doi.org/10.1364/OE.27.010456
16 J.V. Campenhout,, W. Green,, S. Assefa,, Y.A. Vlasov,: Integrated NiSi waveguide heaters for CMOS-compatible silicon thermooptic devices. Opt. Lett. 35(7), 1013–1015 (2010)
https://doi.org/10.1364/OL.35.001013
17 X. Qiang,, X. Zhou,, J. Wang,, C.M. Wilkes,, T. Loke,, S. O’Gara,, L. Kling,, G.D. Marshall,, R. Santagati,, T.C. Ralph,, J.B. Wang,, J.L. O’Brien,, M.G. Thompson,, J.C.F. Matthews,: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12(9), 534–539 (2018)
https://doi.org/10.1038/s41566-018-0236-y
18 R.B. Priti,, O. Liboiron-Ladouceur,: A broadband rearrangeable non-blocking MZI-based thermo-optic O-band switch in the silicon-on-insulator. In: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS). Optical Society of America, PM4D–2 (2017)
https://doi.org/10.1364/PS.2017.PM4D.2
19 F. Horst,, W.M. Green,, S. Assefa,, S.M. Shank,, Y.A. Vlasov,, B.J. Offrein,: Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multi-plexing. Opt. Express 21(10), 11652–11658 (2013)
https://doi.org/10.1364/OE.21.011652
20 L. Zhuang,, C. Zhu,, Y. Xie,, M. Burla,, C.G.H. Roeloffzen,, M. Hoekman,, B. Corcoran,, A.J. Lowery,: Nyquist-filtering (de) multiplexer using ring resonator assisted interferometer circuit. J. Lightwave Technol. 34(8), 1732–1738 (2016)
https://doi.org/10.1109/JLT.2015.2502251
21 L. Yu,, Y. Yin,, Y. Shi,, D. Dai,, S. He,: Thermally tunable silicon photonics microdisk resonator with graphene transparent nanoheaters. Optica 3(2), 159–166 (2016)
https://doi.org/10.1364/OPTICA.3.000159
22 B. Guha,, J. Cardenas,, M. Lipson,: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013)
https://doi.org/10.1364/OE.21.026557
23 M. Bahadori,, A. Gazman,, N. Janosik,, S. Rumley,, Z. Zhu,, R. Polster,, Q. Cheng,, K. Bergman,: Thermal rectification of integrated micro heaters for microring resonators in silicon photonics platform. J. Lightwave Technol. 36(3), 773–788 (2018)
https://doi.org/10.1109/JLT.2017.2781131
24 P. Pintus,, M. Hofbauer,, C.L. Manganelli,, M. Fournier,, S. Gundavarapu,, O. Lemonnier,, F. Gambini,, L. Adelmini,, C. Meinhart,, C. Kopp,, F. Testa,, H. Zimmermann,, C.J. Oton,: PWM-driven thermally tunable silicon microring resonators: design, fabrication, and characterization. Laser Photonics Rev. 13(9), 1800275 (2019)
https://doi.org/10.1002/lpor.201800275
25 C.T. DeRose,, R.D. Kekatpure,, D.C. Trotter,, A. Starbuck,, J.R. Wendt,, A. Yaacobi,, M.R. Watts,, U. Chettiar,, N. Engheta,, P.S. Davids,: Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21(4), 5198–5208 (2013)
https://doi.org/10.1364/OE.21.005198
26 J. Sun,, E. Timurdogan,, A. Yaacobi,, S. Zhan,, E.S. Hosseini,, D.B. Cole,, M.R. Watts,: Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014)
https://doi.org/10.1109/JSTQE.2013.2293316
27 C. Huang,, A. Jha,, T.F. Lima,, A.N. Tait,, B.J. Shastri,, P.R. Prucnal,: On-chip programmable nonlinear optical signal processor and its applications. IEEE J. Sel. Top. Quantum Electron. 99, 1–11 (2020)
https://doi.org/10.1109/JSTQE.2020.2998073
28 A. Sugita,, K. Jinguji,, N. Takato,, K. Katoh,, M. Kawachi,: Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach–Zehnder type optical switch. IEICE Trans. (1976–1990) 73(1), 105–109 (1990)
29 J. Gu,, Z. Zhao,, C. Feng,, M. Liu,, R.T. Chen,, D.Z. Pan,: Towards area-efficient optical neural networks: an FFT-based architecture. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 476–481. IEEE (2020)
https://doi.org/10.1109/ASP-DAC47756.2020.9045156
30 M.M. Pour Fard,, I.A.D. Williamson,, M. Edwards,, K. Liu,, S. Pai,, B. Bartlett,, M. Minkov,, T.W. Hughes,, S. Fan,, T.A. Nguyen,: Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express 28(8), 12138–12148 (2020)
https://doi.org/10.1364/OE.391473
31 G. Qin,, Q. Zhu,, Y. Su,: Fast wavelength seeking in a silicon dual-ring switch based on artificial neural networks. J. Lightwave Technol. 38(18), 5078–5085 (2020)
https://doi.org/10.1109/JLT.2020.3000531
32 J. Wang,, D. Bonneau,, M. Villa,, J.W. Silverstone,, R. Santagati,, S. Miki,, T. Yamashita,, M. Fujiwara,, M. Sasaki,, H. Terai,, M. Tanner,, C.M. Natarajan,, R.H. Hadfield,, J.L. O’Brien,, M.G. Thompson,: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3(4), 407–413 (2016)
https://doi.org/10.1364/OPTICA.3.000407
33 J. Wang,, S. Paesani,, Y. Ding,, R. Santagati,, P. Skrzypczyk,, A. Salavrakos,, J. Tura,, R. Augusiak,, L. Mančinska,, D. Bacco,, D. Bonneau,, J.W. Silverstone,, Q. Gong,, A. Acín,, K. Rottwitt,, L.K. Oxenløwe,, J.L. O’Brien,, A. Laing,, M.G. Thompson,: Multidimensional quantum entanglement with large-scale integrated optics. Science 360(6386), 285–291 (2018)
https://doi.org/10.1126/science.aar7053
34 J.W. Silverstone,, D. Bonneau,, K. Ohira,, N. Suzuki,, H. Yoshida,, N. Iizuka,, M. Ezaki,, C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,, V. Zwiller,, G.D. Marshall,, J.G. Rarity,, J.L. O’Brien,, M.G. Thompson,: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8(2), 104–108 (2014)
https://doi.org/10.1038/nphoton.2013.339
35 S.W. Chung,, H. Abediasl,, H. Hashemi,: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2018)
https://doi.org/10.1109/JSSC.2017.2757009
36 K. Van Acoleyen,, W. Bogaerts,, J. Jágerská,, N. Le Thomas,, R. Houdré,, R. Baets,: Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34(9), 1477–1479 (2009)
https://doi.org/10.1364/OL.34.001477
37 S. Chen,, Y. Shi,, S. He,, D. Dai,: Compact 8-channel thermally reconfigurable optical add/drop multiplexer on silicon. IEEE Photonics Technol. Lett. 28(17), 1874–1877 (2016)
https://doi.org/10.1109/LPT.2016.2574459
38 W. Bogaerts,, D. Pérez,, J. Capmany,, D.A.B. Miller,, J. Poon,, D. Englund,, F. Morichetti,, A. Melloni,: Programmable photonic circuits. Nature 586(7828), 207–216 (2020)
https://doi.org/10.1038/s41586-020-2764-0
39 D. Pérez-López,, A. López,, P. DasMahapatra,, J. Capmany,: Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11(1), 6359 (2020)
https://doi.org/10.1038/s41467-020-19608-w
40 S. Liao,, Y. Ding,, C. Peucheret,, T. Yang,, J. Dong,, X. Zhang,: Integrated programmable photonic filter on the silicon-on-insulator platform. Opt. Express 22(26), 31993–31998 (2014)
https://doi.org/10.1364/OE.22.031993
41 Y. Xie,, L. Zhuang,, K.J. Boller,, A.J. Lowery,: Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier. J. Opt. 19(6), 065802 (2017)
https://doi.org/10.1088/2040-8986/aa6c0a
42 Y. Hashizume,, S. Katayose,, T. Tsuchizawa,, T. Watanabe,, M. Itoh,: Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron. Lett. 48(19), 1234–1235 (2012)
https://doi.org/10.1049/el.2012.1564
43 A. Densmore,, S. Janz,, R. Ma,, J.H. Schmid,, D.X. Xu,, A. Delâge,, J. Lapointe,, M. Vachon,, P. Cheben,: Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 17(13), 10457 (2009)
https://doi.org/10.1364/OE.17.010457
44 F. Smith,, W. Wang,, X. Wang,, Y. Li,, X. Cheng,, H. Wu,: A design study of efficiency enhancement in silicon photonic thermo-optic phase shifters. In: 2019 IEEE Optical Interconnects Conference (OI). IEEE (2019)
https://doi.org/10.1109/OIC.2019.8714481
45 V. Passaro,, F. Magno,, A. Tsarev,: Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. Opt. Express 13(9), 3429–3437 (2005)
https://doi.org/10.1364/OPEX.13.003429
46 S. De,, R. Das,, R.K. Varshney,, T. Schneider,: Design and simulation of thermo-optic phase shifters with low thermal crosstalk for dense photonic integration. IEEE Access: Pract. Innov. Open Solut. 8, 141632–141640 (2020)
https://doi.org/10.1109/ACCESS.2020.3013116
47 C. Giuseppe,, S. Luigi,, R. Ivo,: Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng. (Redondo Beach, Calif.) 50(7), 071112 (2011)
https://doi.org/10.1117/1.3574378
48 M.R. Watts,, J. Sun,, C. DeRose,, D.C. Trotter,, R.W. Young,, G.N. Nielson,: Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)
https://doi.org/10.1364/OL.38.000733
49 S. Liu,, Y. Tian,, Y. Li,, G. Feng,, J. Guo,: Comparison of thermos-optic phase-shifters implemented on CUMEC silicon photonics platform. In: Seventh Symposium on Novel Photo-electronic Detection Technology and Application. (2020)
https://doi.org/10.1117/12.2587413
50 A. Masood,, M. Pantouvaki,, G. Lepage,, P. Verheyen,, J. Van Campenhout,, P. Absil,, D. Van Thourhout,, W. Bogaerts,: Comparison of heater architecture for thermal control of silicon photonics circuits. In: IEEE 10th International Conference on Group IV Photonics. IEEE (2013)
https://doi.org/10.1109/Group4.2013.6644437
51 N.C. Harris,, Y. Ma,, J. Mower,, T. Baehr-Jones,, D. Englund,, M. Hochberg,, C. Galland,: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22(9), 10487–10493 (2014)
https://doi.org/10.1364/OE.22.010487
52 Q. Fang,, J.F. Song,, T.Y. Liow,, H. Cai,, M.B. Yu,, G.Q. Lo,, D.L. Kwong,: Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett. 23(8), 525–527 (2011)
https://doi.org/10.1109/LPT.2011.2114336
53 Z. Lu,, K. Murray,, H. Jayatilleka,, L. Chrostowski,: Michelson interferometer thermo-optic switch on SOI with a 50-µW power consumption. In: 2016 IEEE Photonics Conference (IPC). IEEE (2016)
https://doi.org/10.1109/IPCon.2016.7831002
54 P. Sun,, R.M. Reano,: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)
https://doi.org/10.1364/OE.18.008406
55 H. Yu,, D. Ying,, M. Pantouvaki,, J. Van Campenhout,, P. Absil,, Y. Hao,, J. Yang,, X. Jiang,: Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 22(12), 15178–15189 (2014)
https://doi.org/10.1364/OE.22.015178
56 J. Song,, Q. Fang,, S.H. Tao,, T.Y. Liow,, M.B. Yu,, G.Q. Lo,, D.L. Kwong,: Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express 16(20), 15304– 15311 (2008)
https://doi.org/10.1364/OE.16.015304
57 D. Celo,, D.J. Goodwill,, J. Jiang,, P. Dumais,, M. Li,, E. Bernier,: Thermo-optic silicon photonics with low power and extreme resilience to over-drive. In: 2016 IEEE Optical Interconnects Conference (OI). IEEE (2016)
https://doi.org/10.1109/OIC.2016.7482994
58 K. Murray,, Z. Lu,, H. Jayatilleka,, L. Chrostowski,: Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express 23(15), 19575–19585 (2015)
https://doi.org/10.1364/OE.23.019575
59 S. Chung,, M. Nakai,, H. Hashemi,: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)
https://doi.org/10.1364/OE.27.013430
60 H. Qiu,, Y. Liu,, C. Luan,, D. Kong,, X. Guan,, Y. Ding,, H. Hu,: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
61 S.A. Miller,, Y.C. Chang,, C.T. Phare,, M.C. Shin,, M. Zadka,, S.P. Roberts,, B. Stern,, X. Ji,, A. Mohanty,, O.A. Jimenez Gordillo,, U.D. Dave,, M. Lipson,: Large-scale optical phased array using a low-power multi-pass silicon platform. Optica 7(1), 3–6 (2020)
https://doi.org/10.1364/OPTICA.7.000003
62 A.R. Alves,, S. Declercq,, M.U. Khan,, M. Wang,, L. Van Iseghem,, W. Bogaerts,: Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2020.2975669 (2020)
[1] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[2] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[3] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[4] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[5] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[6] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[7] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[8] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[9] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[10] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[11] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[12] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[13] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[14] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[15] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed