Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 26    https://doi.org/10.1007/s12200-022-00019-2
RESEARCH ARTICLE
Band-like transport in non-fullerene acceptor semiconductor Y6
Kaixuan Chen1,2, Huan Wei1(), Ping-An Chen1, Yu Liu1, Jing Guo1, Jiangnan Xia1, Haihong Xie1, Xincan Qiu1, Yuanyuan Hu1,2()
1. Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
2. Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
 Download: PDF(3829 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The recently reported non-fullerene acceptor (NFA) Y6 has been extensively investigated for high-performance organic solar cells. However, its charge transport property and physics have not been fully studied. In this work, we acquired a deeper understanding of the charge transport in Y6 by fabricating and characterizing thin-film transistors (TFTs), and found that the electron mobility of Y6 is over 0.3–0.4 cm2/(V·s) in top-gate bottom-contact devices, which is at least one order of magnitude higher than that of another well-known NFA ITIC. More importantly, we observed band-like transport in Y6 spin-coated films through temperature-dependent measurements on TFTs. This is particularly amazing since such transport behavior is rarely seen in polycrystalline organic semiconductor films. Further morphology characterization and discussions indicate that the band-like transport originates from the unique molecule packing motif of Y6 and the special phase of the film. As such, this work not only demonstrates the superior charge transport property of Y6, but also suggests the great potential of developing high-mobility n-type organic semiconductors, on the basis of Y6.

Keywords Y6      Thin-film transistors (TFTs)      Mobility      Band-like transport      Film morphology     
Corresponding Author(s): Huan Wei,Yuanyuan Hu   
Issue Date: 22 June 2022
 Cite this article:   
Kaixuan Chen,Huan Wei,Ping-An Chen, et al. Band-like transport in non-fullerene acceptor semiconductor Y6[J]. Front. Optoelectron., 2022, 15(2): 26.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00019-2
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/26
1 J. Yuan,, Y. Zhang,, L. Zhou,, G. Zhang,, H.L. Yip,, T.K. Lau,, X. Lu,, C. Zhu,, H. Peng,, P.A. Johnson,, M. Leclerc,, Y. Cao,, J. Ulanski,, Y. Li,, Y. Zou,: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019)
https://doi.org/10.1016/j.joule.2019.01.004
2 X. Ma,, A. Zeng,, J. Gao,, Z. Hu,, C. Xu,, J.H. Son,, S.Y. Jeong,, C. Zhang,, M. Li,, K. Wang,, H. Yan,, Z. Ma,, Y. Wang,, H.Y. Woo,, F. Zhang,: Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6–1O as acceptor. Natl. Sci. Rev. 8(8), a305 (2021)
https://doi.org/10.1093/nsr/nwaa305
3 X. Wang,, Q. Sun,, J. Gao,, X. Ma,, J.H. Son,, S.Y. Jeong,, Z. Hu,, L. Niu,, H.Y. Woo,, J. Zhang,, F. Zhang,: Ternary organic photovoltaic cells exhibiting 17.59% efficiency with two compatible Y6 derivations as acceptor. Solar RRL. 5(3), 2100007 (2021)
https://doi.org/10.1002/solr.202100007
4 N. Tokmoldin,, S.M. Hosseini,, M. Raoufi,, L.Q. Phuong,, O.J. Sandberg,, H. Guan,, Y. Zou,, D. Neher,, S. Shoaee,: Extraordinarily long diffusion length in PM6:Y6 organic solar cells. J. Mater. Chem. A. 8(16), 7854–7860 (2020)
https://doi.org/10.1039/D0TA03016C
5 G. Chai,, Y. Chang,, J. Zhang,, X. Xu,, L. Yu,, X. Zou,, X. Li,, Y. Chen,, S. Luo,, B. Liu,, F. Bai,, Z. Luo,, H. Yu,, J. Liang,, T. Liu,, K.S. Wong,, H. Zhou,, Q. Peng,, H. Yan,: Fine-tuning of sidechain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 14(6), 3469–3479 (2021)
https://doi.org/10.1039/D0EE03506H
6 T. Umeyama,, K. Igarashi,, D. Sasada,, Y. Tamai,, K. Ishida,, T. Koganezawa,, S. Ohtani,, K. Tanaka,, H. Ohkita,, H. Imahori,: Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem. Sci. (Cambridge) 11(12), 3250–3257 (2020)
https://doi.org/10.1039/C9SC06456G
7 J.S. Park,, G.U. Kim,, D. Lee,, S. Lee,, B. Ma,, S. Cho,, B.J. Kim,: Importance of optimal crystallinity and hole mobility of BDTbased polymer donor for simultaneous enhancements of Voc, Jsc, and FF in efficient nonfullerene organic solar cells. Adv. Func. Mater. 30(51), 2005787 (2020)
https://doi.org/10.1002/adfm.202005787
8 Y. Yang,: The original design principles of the Y-series nonfullerene acceptors, from Y1 to Y6. ACS Nano. 15(12), 18679–18682 (2021)
https://doi.org/10.1021/acsnano.1c10365
9 C. Xiao,, C. Li,, F. Liu,, L. Zhang,, W. Li,: Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. J. Mater. Chem. C. 8(16), 5370–5374 (2020)
https://doi.org/10.1039/D0TC00587H
10 E. Gutierrez-Fernandez,, A.D. Scaccabarozzi,, A. Basu,, E. Solano,, T.D. Anthopoulos,, J. Martín,: Y6 organic thin-film transistors with electron mobilities of 2.4 cm2 V-1 s-1 via microstructural tuning. Adv. Sci. 9(1), 2104977 (2022)
https://doi.org/10.1002/advs.202104977
11 G. Kupgan,, X.K. Chen,, J.L. Brédas,: Molecular packing of nonfullerene acceptors for organic solar cells: distinctive local morphology in Y6 vs. ITIC derivatives. Mater. Today Adv. 11, 100154 (2021)
https://doi.org/10.1016/j.mtadv.2021.100154
12 Y. Lin,, J. Wang,, Z.G. Zhang,, H. Bai,, Y. Li,, D. Zhu,, X. Zhan,: An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27(7), 1170–1174 (2015)
https://doi.org/10.1002/adma.201404317
13 Y. Xiao,, J. Yuan,, G. Zhou,, K.C. Ngan,, X. Xia,, J. Zhu,, Y. Zou,, N. Zhao,, X. Zhan,, X. Lu,: Unveiling the crystalline packing of Y6 in thin films by thermally induced “backbone-on” orientation. J. Mater. Chem. A 9(31), 17030–17038 (2021)
https://doi.org/10.1039/D1TA05268C
14 S. Chen,, T. Yan,, B. Fanady,, W. Song,, J. Ge,, Q. Wei,, R. Peng,, G. Chen,, Y. Zou,, Z. Ge,: High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Sci. China Chem. 63(7), 917–923 (2020)
https://doi.org/10.1007/s11426-020-9736-6
15 Y. Yang,, Z.G. Zhang,, H. Bin,, S. Chen,, L. Gao,, L. Xue,, C. Yang,, Y. Li,: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138(45), 15011–15018 (2016)
https://doi.org/10.1021/jacs.6b09110
16 H. Wei,, Y. Liu,, Z. Liu,, J. Guo,, P.A. Chen,, X. Qiu,, G. Dai,, Y. Li,, J. Yuan,, L. Liao,, Y. Hu,: Effect of backbone fluorine and chlorine substitution on charge-transport properties of naphthalenediimide-based polymer semiconductors. Adv. Electron. Mater. 6(4), 1901241 (2020)
https://doi.org/10.1002/aelm.201901241
17 H. Wei,, P.A. Chen,, J. Guo,, Y. Liu,, X. Qiu,, H. Chen,, Z. Zeng,, T.Q. Nguyen,, Y. Hu,: Low-cost nucleophilic organic bases as n-dopants for organic field-effect transistors and thermoelectric devices. Adv. Func. Mater. 31(30), 2102768 (2021)
https://doi.org/10.1002/adfm.202102768
18 S.P. Tiwari,, E.B. Namdas,, V. Ramgopal Rao,, D. Fichou,, S.G. Mhaisalkar,: Solution-processed n-type organic field-effect transistors with high on /off current ratios based on fullerene derivatives. IEEE Electron. Device Lett. 28(10), 880–883 (2007)
https://doi.org/10.1109/LED.2007.905960
19 Y. Hu,, G. Li,, Z. Chen,: The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy. IEEE Electron. Device Lett. 39(2), 276–279 (2018)
https://doi.org/10.1109/LED.2017.2781301
20 D. Ji,, T. Li,, J. Liu,, S. Amirjalayer,, M. Zhong,, Z.Y. Zhang,, X. Huang,, Z. Wei,, H. Dong,, W. Hu,, H. Fuchs,: Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 10(1), 12 (2019)
https://doi.org/10.1038/s41467-018-07943-y
21 F. Zhang,, C.A. Di,, N. Berdunov,, Y. Hu,, Y. Hu,, X. Gao,, Q. Meng,, H. Sirringhaus,, D. Zhu,: Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater. 25(10), 1401–1407 (2013)
https://doi.org/10.1002/adma.201204075
22 Y. Hu,, N. Berdunov,, C.A. Di,, I. Nandhakumar,, F. Zhang,, X. Gao,, D. Zhu,, H. Sirringhaus,: Effect of molecular asymmetry on the charge transport physics of high mobility n-type molecular semiconductors investigated by scanning Kelvin probe microscopy. ACS Nano. 8(7), 6778–6787 (2014)
https://doi.org/10.1021/nn500944f
23 Y. Hu,, D.X. Cao,, A.T. Lill,, L. Jiang,, C.A. Di,, X. Gao,, H. Sirringhaus,, T.Q. Nguyen,: Effect of alkyl-chain length on charge transport properties of organic semiconductors and organic field-effect transistors. Adv. Electron. Mater. 4(8), 1800175 (2018)
https://doi.org/10.1002/aelm.201800175
24 M.A. Stoeckel,, Y. Olivier,, M. Gobbi,, D. Dudenko,, V. Lemaur,, M. Zbiri,, A.A.Y. Guilbert,, G. D’Avino,, F. Liscio,, A. Migliori,, L. Ortolani,, N. Demitri,, X. Jin,, Y.G. Jeong,, A. Liscio,, M.V. Nardi,, L. Pasquali,, L. Razzari,, D. Beljonne,, P. Samorì,, E. Orgiu,: Analysis of external and internal disorder to understand band-like transport in n-type organic semiconductors. Adv. Mater. 33(13), e2007870 (2021)
https://doi.org/10.1002/adma.202007870
25 G. Zhang,, X.K. Chen,, J. Xiao,, P.C.Y. Chow,, M. Ren,, G. Kupgan,, X. Jiao,, C.C.S. Chan,, X. Du,, R. Xia,, Z. Chen,, J. Yuan,, Y. Zhang,, S. Zhang,, Y. Liu,, Y. Zou,, H. Yan,, K.S. Wong,, V. Coropceanu,, N. Li,, C.J. Brabec,, J.L. Bredas,, H.L. Yip,, Y. Cao,: Delocalization of exciton and electron wavefunction in nonfullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11(1), 3943 (2020)
https://doi.org/10.1038/s41467-020-17867-1
[1] Xianfeng Qiao, Shu Xiao, Peisen Yuan, Dezhi Yang, Dongge Ma. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Front. Optoelectron., 2022, 15(1): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed