Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 17    https://doi.org/10.1007/s12200-022-00020-9
RESEARCH ARTICLE
Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures
Zhongqi Hao1,2,3, Zhiwei Deng1,2, Li Liu1,2(), Jiulin Shi1,2, Xingdao He1,2
1. School of Measuring and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Key Laboratory of Opto-electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
3. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1200 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spatial confinement is a simple and cost-effective method for enhancing signal intensity and improving the detection sensitivity of laser-induced breakdown spectroscopy (LIBS). However, the spatial confinement effects of LIBS under different pressures remains a question to be studied, because the pressure of the ambient gas has a significant influence on the temporal and spatial evolution of plasma. In this study, spatial confinement effects of LIBS under a series of reduced air pressures were investigated experimentally, and the plasma characteristics under different air pressures were studied. The results show that the reduced air pressure can lead to both earlier onset and weakening of the enhancement effect of the spatial confinement on the LIBS line intensity. When the air pressure drops to 0.1 kPa, the enhancement effect of the emission intensity no longer comes from the compression of the reflected shock wave on the plasma, but from the cavity’s restriction of the plasma expansion space. In conclusion, the enhancement effect of spatial confinement technology on the LIBS is still effective when the pressure is reduced, which further expands the research and application field of spatial confinement technology.

Keywords Laser-induced breakdown spectroscopy (LIBS)      Spatial confinement      Plasma temperature      Stark broadening     
Corresponding Author(s): Li Liu   
Issue Date: 16 May 2022
 Cite this article:   
Zhongqi Hao,Zhiwei Deng,Li Liu, et al. Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures[J]. Front. Optoelectron., 2022, 15(2): 17.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00020-9
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/17
1 L.B. Guo, , X.Y. Li, , W. Xiong, , X.Y. Zeng, , Y.F. Lu, : Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy. Front. Phys. 11 (6), 115208 (2016)
2 W.T. Li, , Y.N. Zhu, , X. Li, , Z.Q. Hao, , L.B. Guo, , X.Y. Li, , X.Y. Zeng, , Y.F. Lu, : In situ classification of rocks using stand-off laserinduced breakdown spectroscopy with a compact spectrometer. J. Anal. At. Spectrom. 33 (3), 461- 467 (2018)
3 W. Li, , X.Y. Li, , X. Li, , Z. Hao, , Y. Lu, , X. Zeng, : A review of remote laser-induced breakdown spectroscopy. Appl. Spectrosc. Rev. 55 (1), 1- 25 (2020)
4 Z. Zhu, , J. Li, , Y. Guo, , X. Cheng, , Y. Tang, , L. Guo, , X. Li, , Y. Lu, , X. Zeng, : Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 33 (2), 205- 209 (2018)
5 Y. Li, , D. Tian, , Y. Ding, , G. Yang, , K. Liu, , C. Wang, , X. Han, : A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 53 (1), 1- 35 (2018)
6 D.X. Sun, , M.G. Su, , C.Z. Dong, : Emission signal enhancement and plasma diagnostics using collinear double pulse for laserinduced breakdown spectroscopy of aluminum alloys. Eur. Phys. J. Appl. Phys. 61 (3), 30802 (2013)
7 G. Nicolodelli, , G.S. Senesi, , R.A. Romano, , I.L.O. Perazzoli, , D.M.B.P. Milori, : Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta B 111, 23- 29 (2015)
8 O.A. Nassef, , H.E. Elsayed-Ali, : Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta B 60 (12), 1564- 1572 (2005)
9 L. Liu, , X. Huang, , S. Li, , Y. Lu, , K.P. Chen, , Y. Lu, : Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches. Proc. Soc. Photo-Instrum. Eng. 9736, 97361S (2016)
10 M. Dell’Aglio, , R. Alrifai, , A.D. Giacomo, : Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim. Acta B 148, 105- 112 (2018)
11 A.D. Giacomo, , R. Gaudiuso, , C. Koral, , M. Dell’Aglio, , O.D. Pascale, : Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta B 98 (8), 19- 27 (2014)
12 L. Sládková, , D. Prochazka, , P. Pořizka, , P. Skarkova, , M. Remesova, , A. Hrdlicka, , K. Novotný, , L. Celko, , J. Kaiser, : Improvement of the laser-induced breakdown spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions. Spectrochim. Acta B 127, 48- 55 (2017)
13 F. Yang, , L. Jiang, , S. Wang, , Z. Cao, , L. Liu, , M. Wang, , Y. Lu, : Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2. Opt. Laser Technol. 93, 194- 200 (2017)
14 Z. Hao, , L. Guo, , C. Li, , M. Shen, , X. Zou, , X. Li, , Y. Lu, , X. Zeng, : Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J. Anal. At. Spectrom. 29 (12), 2309- 2314 (2014)
15 X. Shen, , Y. Lu, , T. Gebre, , H. Ling, , Y.X. Han, : Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100 (5), 053303 (2006)
16 L.B. Guo, , W. Hu, , B.Y. Zhang, , X.N. He, , C.M. Li, , Y.S. Zhou, , Z.X. Cai, , X.Y. Zeng, , Y.F. Lu, : Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement. Opt. Express 19 (15), 14067- 14075 (2011)
17 M. Akhtar, , A. Jabbar, , S. Mehmood, , N. Ahmed, , R. Ahmed, , M.A. Baig, : Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochim. Acta B 148, 143- 151 (2018)
18 L.B. Guo, , Z.Q. Hao, , M. Shen, , W. Xiong, , X.N. He, , Z.Q. Xie, , M. Gao, , X.Y. Li, , X.Y. Zeng, , Y.F. Lu, : Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy. Opt. Express 21 (15), 18188- 18195 (2013)
19 J. Guo, , J. Shao, , T. Wang, , C. Zheng, , A. Chen, , M. Jin, : Optimization of distances between the target surface and focal point on spatially confined laser-induced breakdown spectroscopy with a cylindrical cavity. J. Anal. At. Spectrom. 32 (2), 367- 372 (2017)
20 X. Fu, , G. Li, , H. Tian, , D. Dong, : Detection of cadmium in soils using laser-induced breakdown spectroscopy combined with spatial confinement and resin enrichment. RSC Adv. 8 (69), 39635- 39640 (2018)
21 J. Guo, , T. Wang, , J. Shao, , A. Chen, , M. Jin, : Emission enhancement of laser-induced breakdown spectroscopy by increasing sample temperature combined with spatial confinement. J. Anal. At. Spectrom. 33 (12), 2116- 2123 (2018)
22 Y. Liu, , M. Baudelet, , M. Richardson, : Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics. J. Anal. At. Spectrom. 25 (8), 1316- 1323 (2010)
23 X.Y. Yang, , Z.Q. Hao, , C.M. Li, , J.M. Li, , R.X. Yi, , M. Shen, , K.H. Li, , L.B. Guo, , X.Y. Li, , Y.F. Lu, , X.Y. Zeng, : Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 24 (12), 13410- 13417 (2016)
24 Y. Tang, , J. Li, , Z. Hao, , S. Tang, , Z. Zhu, , L. Guo, , X. Li, , X. Zeng, , J. Duan, , Y. Lu, : Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwaveassisted excitation. Opt. Express 26 (9), 12121- 12130 (2018)
25 A.L. Vieira, , T.V. Silva, , F.S.I. De Sousa, , G.S. Senesi, , D.S. Junior, , E.C. Ferreira, , J.A.G. Neto, : Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy. Microchem. J. 139, 322- 326 (2018)
26 A. De Giacomo, , R. Gaudiuso, , C. Koral, , M. Dell’Aglio, , O. De Pascale, : Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem. 85 (21), 10180- 10187 (2013)
27 S. Waheed, , S. Bashir, , A. Dawood, , S. Anjum, , M. Akram, , A. Hayat, , S. Amin, , A. Zaheer, : Effect of magnetic field on laser induced breakdown spectroscopy of zirconium dioxide (ZrO2) plasma. Optik (Stuttgart) 140, 536- 544 (2017)
28 X.K. Shen, , J. Sun, , H. Ling, , Y. Lu, : Spatial confinement effects in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 91 (8), 081501 (2007)
29 A. Popov, , F. Colao, , R. Fantoni, : Spatial confinement of laserinduced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. At. Spectrom. 25 (6), 837- 848 (2010)
30 L. Guo, , C. Li, , W. Hu, , Y. Zhou, , B. Zhang, , Z. Cai, , X. Zeng, , Y. Lu, : Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 98 (13), 131501 (2011)
31 Z. Hou, , Z. Wang, , J. Liu, , W. Ni, , Z. Li, : Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy. Opt. Express 21 (13), 15974- 15979 (2013)
32 Z.Q. Hao, , L. Liu, , M. Shen, , X.Y. Yang, , K.H. Li, , L.B. Guo, , X.Y. Li, , Y.F. Lu, , X.Y. Zeng, : Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy. Opt. Express 24 (23), 26521- 26528 (2016)
33 Y. Fu, , Z. Hou, , Z. Wang, : Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy. Opt. Express 24 (3), 3055- 3066 (2016)
34 S.S. Harilal, , G.V. Miloshevsky, , P.K. Diwakar, , N.L. Lahaye, , A. Hassanein, : Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19 (8), 083504 (2012)
35 L.B. Guo, , X. Cheng, , Y. Tang, , S.S. Tang, , X.Y. Zeng, : Improvement of spectral intensity and resolution with fiber laser for onstream slurry analysis in laser-induced breakdown spectroscopy. Spectrochim. Acta B 74 (8), 913- 920 (2018)
36 C. Li, , J. Wang, , X. Wang, : Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy. Phys. Lett. A 378 (45), 3319- 3325 (2014)
37 P. Kumar, , S. Soumyashree, , N. Rao Epuru, , S.B. Banerjee, , R.P. Singh, , K.P. Subramanian, : Determination of stark shifts and widths using time resolved laser-induced breakdown spectroscopy (LIBS) measurements. Appl. Spectrosc. 74 (8), 913- 920 (2020)
[1] Jingjing LI, Feng CHEN, Guangqian HUANG, Siyu ZHANG, Weiliang WANG, Yun TANG, Yanwu CHU, Jian YAO, Lianbo GUO, Fagang JIANG. Identification of Graves’ ophthalmology by laser-induced breakdown spectroscopy combined with machine learning method[J]. Front. Optoelectron., 2021, 14(3): 321-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed