Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 20    https://doi.org/10.1007/s12200-022-00023-6
RESEARCH ARTICLE
Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations
Can Ma1, Jin Hou1(), Chunyong Yang1, Ming Shi1, Shaoping Chen1
1. Hubei Key Laboratory of Intelligent Wireless
2. Communications, Hubei Engineering Research Center
3. for Intelligent Internet of Things, College of Electronic
4. and Information Engineering, South-Central MinZu
5. University, Wuhan 430074, China
 Download: PDF(1006 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The slab effective index difference between the transverse-electric (TE) and transverse-magnetic (TM) polarizations was utilized to obtain complete photonic bandgap (CPBG) in a silicon nitride ( SixNy) photonic crystal slab. For this, coincident frequency range in the TE photonic bandgap (PBG) and TM PBG, which denotes the CPBGs of the slab, must be found with the same structure. Through adjusting the effective index pair of TE and TM polarizations by changing the thickness of the SixNy core layer, and also optimizing the structure parameters within the photonic crystal plane, a large normalized CPBG of 5.62% was theoretically obtained in a slab of SixNy with a refractive index of 2.5. Moreover, based on the obtained CPBG, a microcavity which could support both TE and TM polarization was theoretically demonstrated. The cavity modes for different polarizations were both well confined, which proved the reliability of the CPBG. In addition, using the same method, the lowest refractive index of SixNy on silica slab for a CPBG could be extended to as low as 2. The results indicate that there is potential for development of various high-performance CPBG devices based on SixNy slab technology.

Keywords Silicon nitride slab      Complete photonic bandgap (CPBG)      Microcavity      Slab device     
Corresponding Author(s): Jin Hou   
Issue Date: 16 May 2022
 Cite this article:   
Can Ma,Jin Hou,Chunyong Yang, et al. Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations[J]. Front. Optoelectron., 2022, 15(2): 20.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00023-6
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/20
1 Y. Akahane, , T. Asano, , B.S. Song, , S. Noda, : High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425 (6961), 944- 947 (2003)
2 Y. Morita, , Y. Tsuji, , K. Hirayama, : Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap. IEEE Photonics Technol. Lett. 20 (2), 93- 95 (2008)
3 H.M. Guo, , X.R. Hong, , H.R. Fan, , R. Fu, , X. Liu, , Y.X. Li, , S. Feng, , X. Chen, , C.B. Li, , Y.Q. Wang, : Polarization-independent waveguides based on the complete band gap of the two-dimensional photonic crystal slabs. Laser Phys. 29 (4), 046205 (2019)
4 M. Turduev, , I.H. Giden, , H. Kurt, : Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs. J. Opt. Soc. Am. B Opt. Phys. 29 (7), 1589- 1598 (2012)
5 Y. Tsuji, , Y. Morita, , K. Hirayama, : Photonic crystal waveguide based on 2-D photonic crystal with absolute photonic band gap. IEEE Photonics Technol. Lett. 18 (22), 2410- 2412 (2006)
6 Y. Kalra, , R.K. Sinha, : Design of ultra compact polarization splitter based on the complete photonic band gap. Opt. Quant. Electron. 37 (9), 889- 895 (2005)
7 F. Wen, , S. David, , X. Checoury, , M. El Kurdi, , P. Boucaud, : Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. Opt. Express 16 (16), 12278- 12289 (2008)
8 C. Bayer, , M. Straub, : Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap. Appl. Opt. 48 (27), 5050- 5054 (2009)
9 H. Wu, , D.S. Citrin, , L. Jiang, , X. Li, : Polarization-independent single-mode waveguiding with honeycomb photonic crystals. IEEE Photonics Technol. Lett. 27 (8), 840- 843 (2015)
10 B. Jalali, : Nonlinear optics in the mid-infrared. Nat. Photonics 4 (8), 506- 508 (2010)
11 D.T.H. Tan, , K.J.A. Ooi, , D.K.T. Ng, : Nonlinear optics on siliconrich nitride—a high nonlinear figure of merit CMOS platform. Photonics Res. 6 (5), B50 (2018)
12 D.J. Moss, , R. Morandotti, , A.L. Gaeta, , M. Lipson, : New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7 (8), 597- 607 (2013)
13 S. Matsushita, , O. Suavet, , H. Hashiba, : Full-photonic-bandgap structures for prospective dye-sensitized solar cells. Electrochim. Acta 55 (7), 2398- 2403 (2010)
14 S. Matsushita, , A. Matsutani, , Y. Morii, , D. Kobayashi, , K. Nishioka, , D. Shoji, , M. Sato, , T. Tatsuma, , T. Sannomiya, , T. Isobe, , A. Nakajima, : Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid. J. Mater. Sci. 51 (2), 1066- 1073 (2016)
15 M. Spurny, , L. O’Faolain, , D.A.P. Bulla, , B. Luther-Davies, , T.F. Krauss, : Fabrication of low loss dispersion engineered chalcogenide photonic crystals. Opt. Express 19 (3), 1991- 1996 (2011)
16 K. Suzuki, , T. Baba, : Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides. Opt. Express 18 (25), 26675- 26685 (2010)
17 C. Grillet, , C. Smith, , D. Freeman, , S. Madden, , B. Luther-Davies, , E. Magi, , D. Moss, , B. Eggleton, : Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt. Express 14 (3), 1070- 1078 (2006)
18 A. Cerjan, , S.H. Fan, : Complete photonic band gaps in supercell photonic crystals. Phys. Rev. A 96 (5), 051802 (2017)
19 A. Rahim, , E. Ryckeboer, , A.Z. Subramanian, , S. Clemmen, , B. Kuyken, , A. Dhakal, , A. Raza, , A. Hermans, , M. Muneeb, , S. Dhoore, , Y. Li, , U. Dave, , P. Bienstman, , N. Le Thomas, , G. Roelkens, , D. Van Thourhout, , P. Helin, , S. Severi, , X. Rottenberg, , R. Baets, : Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 35 (4), 639- 649 (2017)
20 C. Lacava, , S. Stankovic, , A.Z. Khokhar, , T.D. Bucio, , F.Y. Gardes, , G.T. Reed, , D.J. Richardson, , P. Petropoulos, : Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep. 7 (1), 22 (2017)
21 K.J. Ooi, , D.K. Ng, , T. Wang, , A.K. Chee, , S.K. Ng, , Q. Wang, , L.K. Ang, , A.M. Agarwal, , L.C. Kimerling, , D.T. Tan, : Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017)
22 K.K.T. Kawano, : Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation. Wiley Hoboken (2002)
23 M. Qiu, : Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81 (7), 1163- 1165 (2002)
24 M. Qiu, , K. Azizi, , A. Karlsson, , M. Swillo, , B. Jaskorzynska, : Numerical studies of mode gaps and coupling efficiency for linedefect waveguides in two-dimensional photonic crystals. Phys. Rev. B 64 (15), 155113 (2001)
25 J. Hou, , D.S. Citrin, , Z. Cao, , C. Yang, , Z. Zhong, , S. Chen, : Slow light in square-lattice chalcogenide photonic crystal holey fibers. IEEE J. Sel. Top. Quantum Electron. 22 (2), 271- 278 (2016)
26 S. Johnson, , J. Joannopoulos, : Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8 (3), 173- 190 (2001)
27 B. Rezaei, , T. Fathollahi Khalkhali, , A. Soltani Vala, , M. Kalafi, : Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background. Opt. Commun. 282 (14), 2861- 2869 (2009)
28 R. Proietti Zaccaria, , P. Verma, , S. Kawaguchi, , S. Shoji, , S. Kawata, : Manipulating full photonic band gaps in two dimensional birefringent photonic crystals. Opt. Express 16 (19), 14812- 14820 (2008)
29 Y.F. Chau, , F.L. Wu, , Z.H. Jiang, , H.Y. Li, : Evolution of the complete photonic bandgap of two-dimensional photonic crystal. Opt. Express 19 (6), 4862- 4867 (2011)
30 I.H. Giden, , H. Kurt, : Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering. Appl. Opt. 51 (9), 1287- 1296 (2012)
31 T.X. Ma, , Y.S. Wang, , C. Zhang, : Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins. Opt. Commun. 312, 68- 72 (2014)
32 P. Shi, , K. Huang, , Y. Li, : Photonic crystal with complex unit cell for large complete band gap. Opt. Commun. 285 (13-14), 3128- 3132 (2012)
33 Y.F. Wang, , Y.S. Wang, , X.X. Su, : Large bandgaps of two-dimensional phononic crystals with cross-like holes. J. Appl. Phys. 110 (11), 113520 (2011)
34 K. Luke, , A. Dutt, , C.B. Poitras, , M. Lipson, : Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21 (19), 22829- 22833 (2013)
35 D.T.H. Tan, , K. Ikeda, , P.C. Sun, , Y. Fainman, : Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96 (6), 061101 (2010)
36 J.D. Joannopoulos, , J.N. Winn, , R.D. Meade, : Photonic Crystal Molding the Flow of Light, 2nd edn. Princeton University, New Jersey (2008)
37 A.F. Oskooi, , D. Roundy, , M. Ibanescu, , P. Bermel, , J.D. Joannopoulos, , S.G. Johnson, : MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181 (3), 687- 702 (2010)
[1] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[2] Xuepeng ZHAN, Huailiang XU, Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Front. Optoelectron., 2016, 9(3): 420-427.
[3] Zhicheng LIU,Hao SUN,Leijun YIN,Yongzhuo LI,Jianxing ZHANG,Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
[4] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[5] Guangcun SHAN, Wei HUANG. Photon properties of light in semiconductor microcavities[J]. Front Optoelec Chin, 2009, 2(3): 345-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed