Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 34    https://doi.org/10.1007/s12200-022-00037-0
REVIEW ARTICLE
Fiber structures and material science in optical fiber magnetic field sensors
Jing Zhang1(), Chen Wang1, Yunkang Chen1, Yudiao Xiang1, Tianye Huang1, Perry Ping Shum1,2, Zhichao Wu1()
1. School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
2. Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(1499 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

Keywords Optical fiber magnetic field sensors      Optical fiber structures      Magnetically sensitive materials      Optical fiber current sensors      Geomagnetic monitoring      Distributed magnetic fields sensors     
Corresponding Author(s): Jing Zhang,Zhichao Wu   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 23 August 2022
 Cite this article:   
Jing Zhang,Chen Wang,Yunkang Chen, et al. Fiber structures and material science in optical fiber magnetic field sensors[J]. Front. Optoelectron., 2022, 15(3): 34.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00037-0
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/34
1 P. Ripka,, M. Janosek,: Advances in magnetic field sensors. IEE. Sens. J. 10(6), 1108–1116 (2010)
https://doi.org/10.1109/JSEN.2010.2043429
2 S. Tumanski,: Modern magnetic field sensors—a review. Organ. 10(1), 1–12 (2013)
3 D. Murzin,, D.J. Mapps,, K. Levada,, V. Belyaev,, A. Omelyanchik,, L. Panina,, V. Rodionova,: Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20(6), 1569 (2020)
https://doi.org/10.3390/s20061569
4 M. Melzer,, J.I. Mönch,, D. Makarov,, Y. Zabila,, G.S.C. Bermúdez,, D. Karnaushenko,, S. Baunack,, F. Bahr,, C. Yan,, M. Kaltenbrunner,, O.G. Schmidt,: Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015)
https://doi.org/10.1002/adma.201405027
5 J. Lenz,, A.S. Edelstein,: Magnetic sensors and their applications. IEE. Sens. J. 6(3), 631–649 (2006)
https://doi.org/10.1109/JSEN.2006.874493
6 C. Liu,, T. Shen,, H.B. Wu,, Y. Feng,, J.J. Chen,: Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt. Fiber Technol. 65, 102634 (2021)
https://doi.org/10.1016/j.yofte.2021.102634
7 N. Alberto,, M.F. Domingues,, C. Marques,, P. André,, P. Antunes,: Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18(12), 4325 (2018)
https://doi.org/10.3390/s18124325
8 J. Castrellon-Uribe Optical fiber sensors: an overview. IntechOpen. (2012)
https://doi.org/10.5772/28529
9 A. Othonos,: Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)
https://doi.org/10.1063/1.1148392
10 H. Bartelt,: Fiber Bragg grating sensors and sensor arrays. Adv. Sci. Technol. 55, 138–144 (2008)
https://doi.org/10.4028/3-908158-12-5.138
11 H. Liu,, S.W. Or,, H.Y. Tam,: Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A 173(1), 122–126 (2012)
https://doi.org/10.1016/j.sna.2011.11.005
12 Y. Wu, B. J., Yang,, K. Qiu,: Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors. In: 2008 1st Asia-Pacific Optical Fiber Sensors Conference. Chengdu: IEEE: 1–3 (2008)
https://doi.org/10.1109/APOS.2008.5226308
13 M. Yang,, J. Dai,, C. Zhou,, D. Jiang,: Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 17(23), 20777–20782 (2009)
https://doi.org/10.1364/OE.17.020777
14 Y. Dai,, M. Yang,, G. Xu,, Y. Yuan,: Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser. Opt. Express 21(14), 17386–17391 (2013)
https://doi.org/10.1364/OE.21.017386
15 L. Bao,, X. Dong,, S. Zhang,, C. Shen,, P.P. Shum,: Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating. IEE. Sens. J. 18(10), 4008–4012 (2018)
https://doi.org/10.1109/JSEN.2018.2820741
16 J. M. Estudillo-Ayala,, R. I. Mata-Chávez,, J. C. Hernández-García,, R. Rojas-Laguna,: Long period fiber grating produced by arc discharges. Fiber Opt. Sens. IntechOpen (2012)
17 L. Gao,, T. Zhu,, M. Deng,, K.S. Chiang,, X. Sun,, X. Dong,, Y. Hou,: Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection. IEEE Photonics J. 4(6), 2095–2104 (2012)
https://doi.org/10.1109/JPHOT.2012.2226439
18 C.C. Chiang,, Z.J. Chen,: A novel optical fiber magnetic sensor based on electroforming long-period fiber grating. J. Lightwave Technol. 32(19), 3331–3336 (2014)
https://doi.org/10.1109/JLT.2014.2343979
19 Y. Zhao,, S. Liu,, C. Xiong,, Y. Wang,, Z. Li,, Z. Sun,, J. Li,, Y. Wang,: Magnetic field sensor based on helical long-period fiber grating with a three-core optical fiber. Opt. Express 29(13), 20649–20656 (2021)
https://doi.org/10.1364/OE.429957
20 J. Albert,, L.Y. Shao,, C. Caucheteur,: Tilted fiber Bragg grating sensors. Laser Photonic. Rev. 7(1), 83–108 (2013)
https://doi.org/10.1002/lpor.201100039
21 T. Erdogan,, J.E. Sipe,: Tilted fiber phase gratings. JOSA A 13(2), 296–313 (1996)
https://doi.org/10.1364/JOSAA.13.000296
22 D. Yang,, L. Du,, Z. Xu,, Y. Jiang,, J. Xu,, M. Wang,, Y. Bai,, H. Wang,: Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 104(6), 061903 (2014)
https://doi.org/10.1063/1.4864649
23 P. Childs,, A. Candiani,, S. Pissadakis,: Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23(13), 929–931 (2011)
https://doi.org/10.1109/LPT.2011.2143397
24 J. Zheng,, X. Dong,, P. Zu,, J. Ji,, H. Su,, P.P. Shum,: Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 103(18), 183511 (2013)
https://doi.org/10.1063/1.4828562
25 L.V. Nguyen,, D. Hwang,, S. Moon,, D.S. Moon,, Y. Chung,: High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)
https://doi.org/10.1364/OE.16.011369
26 S. Tofighi,, A. Bahrampour,, N. Pishbin,, A. Bahrampour,: Interferometric fiber-optic sensors, 1st edn. CRC Press, Boca Raton (2015)
27 Z. Li,, C. Liao,, J. Song,, Y. Wang,, F. Zhu,, Y. Wang,, X. Dong,: Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component. Photonics Res. 4(5), 197–201 (2016)
https://doi.org/10.1364/PRJ.4.000197
28 F.C.D.N. de Souza,, L.S.P. Maia,, G.M. de Medeiros,, M.A.R. Miranda,, J.M. Sasaki,, G.F. Guimarães,: Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEE. Sens. J. 18(19), 7998–8004 (2018)
https://doi.org/10.1109/JSEN.2018.2862393
29 N. Zhang,, M. Wang,, B. Wu,, M. Han,, B. Yin,, J. Cao,, C. Wang,: Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEE. Sens. J. 20(13), 7053–7059 (2020)
https://doi.org/10.1109/JSEN.2020.2973515
30 L. Zeng,, X. Sun,, L. Zhang,, Y. Hu,, J. Duan,: High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 249, 168234 (2022)
https://doi.org/10.1016/j.ijleo.2021.168234
31 C.N. Rao,, X. Gui,, D. Pawar,, Q.G. Huang,, C.S. Beera,, P.J. Cao,, J.L. Wen,, D.L. Zhu,, Y.Y. Lu,: Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. J. Magn. Magn. Mater. 499, 166298 (2020)
https://doi.org/10.1016/j.jmmm.2019.166298
32 S. Yin,, P.B. Ruffin,, T.S. Francis,: Fiber optic sensors, 2nd edn. CRC Press, Boca Raton (2008)
33 R.Q. Lv,, Y. Zhao,, D. Wang,, Q. Wang,: Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 26(3), 217–219 (2013)
https://doi.org/10.1109/LPT.2013.2290546
34 J. Xia,, F. Wang,, H. Luo,, Q. Wang,, S. Xiong,: A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors. 16(5), 620 (2016)
https://doi.org/10.3390/s16050620
35 D. Zhang,, H. Wei,, H. Hu,, S. Krishnaswamy,: Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity. APL Photonics. 5(7), 076112 (2020)
https://doi.org/10.1063/5.0012988
36 Y. Zheng,, L.H. Chen,, J. Yang,, R. Raghunandhan,, X. Dong,, P.L. So,, C.C. Chan,: Fiber optic Fabry-Perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)
https://doi.org/10.1109/JSTQE.2017.2649462
37 X. Wang,, Y. Zhao,, R. Lv,, H. Zheng,, L. Cai,: Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–8 (2021)
https://doi.org/10.1109/TIM.2021.3115200
38 B. Culshaw,: The optical fiber Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)
https://doi.org/10.1088/0957-0233/17/1/R01
39 P. Zu,, C.C. Chan,, W.S. Lew,, Y. Jin,, Y. Zhang,, H.F. Liew,, L.H. Chen,, W.C. Wong,, X. Dong,: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)
https://doi.org/10.1364/OL.37.000398
40 P. Zu,, C.C. Chan,, G.W. Koh,, W.S. Lew,, Y. Jin,, H.F. Liew,, W.C. Wong,, X. Dong,: Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)
https://doi.org/10.1016/j.snb.2013.09.085
41 Y. Zhao,, D. Wu,, R.Q. Lv,, J. Li,: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high-birefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)
https://doi.org/10.1109/TIM.2016.2519767
42 R. Kashyap,, B.K. Nayar,: An all single-mode fiber Michelson interferometer sensor. J. Lightwave Technol. 1(4), 619–624 (1983)
https://doi.org/10.1109/JLT.1983.1072153
43 M. Deng,, X. Sun,, M. Han,, D. Li,: Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. Appl. Opt. 52(4), 734–741 (2013)
https://doi.org/10.1364/AO.52.000734
44 F. Chen,, Y. Jiang,: Fiber optic magnetic field sensor based on the TbDyFe rod. Meas. Sci. Technol. 25(8), 085106 (2014)
https://doi.org/10.1088/0957-0233/25/8/085106
45 S. Pu,, L. Mao,, T. Yao,, J. Gu,, M. Lahoubi,, X. Zeng,: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEE. Sens. J. 17(18), 5857–5861 (2017)
https://doi.org/10.1109/JSEN.2017.2734908
46 X. Feng,, Y. Jiang,, H. Zhang,: Fiber-optic Michelson magnetic field sensor based on a mechanical amplifier structure. Appl. Opt. 60(33), 10359–10364 (2021)
https://doi.org/10.1364/AO.440704
47 S.W. Harun,, K.S. Lim,, C.K. Tio,, K. Dimyati,, H. Ahmad,: Theoretical analysis and fabrication of tapered fiber. Optik 124(6), 538–543 (2013)
https://doi.org/10.1016/j.ijleo.2011.12.054
48 Y. Zhao,, D. Wu,, R.Q. Lv,: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27(1), 26–29 (2014)
https://doi.org/10.1109/LPT.2014.2360531
49 E. Rodríguez-Schwendtner,, N. Díaz-Herrera,, M.C. Navarrete,, A. Gonzalez-Cano,, O. Esteban,: Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuators A 264, 58–62 (2017)
https://doi.org/10.1016/j.sna.2017.07.040
50 L.A. Herrera-Piad,, J.W. Haus,, D. Jauregui-Vazquez,, J.M. Sierra-Hernandez,, J.M. Estudillo-Ayala,, Y. Lopez-Dieguez,, R. Rojas-Laguna,: Magnetic field sensing based on bi-tapered optical fibers using spectral phase analysis. Sensors 17(10), 2393 (2017)
https://doi.org/10.3390/s17102393
51 J. Zhang,, X. Qiao,, R. Wang,, F. Chen,, W. Bao,: Highly sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid. IEE. Sens. J. 19(7), 2576–2580 (2018)
https://doi.org/10.1109/JSEN.2018.2888865
52 Y. Zhang,, Y. Ning,, M. Zhang,, H. Guo,, Y. Zhang,, Z. Liu,, X. Ji,, J. Zhang,, X. Yang,, L. Yuan,: Spider silk-based fiber magnetic field sensor. J. Lightwave Technol. 39(20), 6631–6636 (2021)
https://doi.org/10.1109/JLT.2021.3100896
53 S. Tam, J. M., Szunerits,, D. R. Walt,: Optical fibers for nanodevices. Encyclopedia of nanoscience and nanotechnology. America: American Scientific Publishers. 8(177): 167–177 (2004)
54 J. Dai,, M. Yang,, X. Li,, H. Liu,, X. Tong,: Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 17(3), 210–213 (2011)
https://doi.org/10.1016/j.yofte.2011.02.004
55 H. Wang,, S. Pu,, N. Wang,, S. Dong,, J. Huang,: Magnetic field sensing based on single-mode-multimode-single-mode fiber structures using magnetic fluids as cladding. Opt. Lett. 38(19), 3765–3768 (2013)
https://doi.org/10.1364/OL.38.003765
56 Q. Wang,, X. Liu,, Y. Zhao,, R. Lv,, H. Hu,, J. Li,: Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628–633 (2015)
https://doi.org/10.1016/j.optcom.2015.08.043
57 Y. Ying,, K. Xu,, L.L. Sun,, R. Zhang,, X.F. Guo,, G.Y. Si,: D-shaped fiber magnetic-field sensor based on fine-tuning magnetic fluid grating period. IEEE Trans. Electron Dev. 64(4), 1735–1741 (2017)
https://doi.org/10.1109/TED.2017.2662070
58 H. Liu,, H. Li,, Q. Wang,, M. Wang,, Y. Ding,, C. Zhu,, D. Cheng,: Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 158, 1402–1409 (2018)
https://doi.org/10.1016/j.ijleo.2018.01.033
59 B.D. Gupta,, H. Dodeja,, A.K. Tomar,: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28(11), 1629–1639 (1996)
https://doi.org/10.1007/BF00331053
60 R. Zhang,, T. Liu,, Q. Han,, Y. Chen,, L. Li,: U-bent single-mode-multimode-single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl. Phys. Express 7(7), 072501 (2014)
https://doi.org/10.7567/APEX.7.072501
61 L. Zhu,, Q. Lin,, K. Yao,, N. Zhao,, P. Yang,, Z. Jiang,: Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)
https://doi.org/10.1109/TIM.2021.3122177
62 I.S. Grant,, W.R. Phillips,: Electromagnetism, 2nd edn. Wiley, New York (2013)
63 H. Zheng,, H.P. Shao,, T. Lin,, Z.F. Zhao,, Z.M. Guo,: Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 37(9), 803–807 (2018)
https://doi.org/10.1007/s12598-016-0731-6
64 B. Chen,, Y.G. Fan,, S.P. Zhou,: Study on preparation of oil-based Fe3O4 nano magnetic fluid. Adv. Mater. Res. 148, 808–811 (2011)
https://doi.org/10.4028/www.scientific.net/AMR.148-149.808
65 W. Huang,, J. Wu,, W. Guo,, R. Li,, L. Cui,: Study on the magnetic stability of iron-nitride magnetic fluid. J. Alloy. Compd. 443(1–2), 195–198 (2007)
https://doi.org/10.1016/j.jallcom.2007.05.014
66 L. Martinez,, F. Cecelja,, R. Rakowski,: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A 123, 438–443 (2005)
https://doi.org/10.1016/j.sna.2005.05.003
67 S.Y. Yang,, J.J. Chieh,, H.E. Horng,, C.Y. Hong,, H.C. Yang,: Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 84(25), 5204–5206 (2004)
https://doi.org/10.1063/1.1765201
68 X. Zhou,, X. Li,, S. Li,, G.W. An,, T. Cheng,: Magnetic field sensing based on SPR optical fiber sensor interacting with magnetic fluid. IEEE Trans. Instrum. Meas. 68(1), 234–239 (2018)
https://doi.org/10.1109/TIM.2018.2834222
69 N. Cennamo,, F. Arcadio,, V. Marletta,, S. Baglio,, L. Zeni,, B. Andò,: A magnetic field sensor based on spr-pof platforms and ferrofluids. IEEE Trans. Instrum. Meas. 70, 1–10 (2020)
https://doi.org/10.1109/TIM.2020.3035114
70 Y. Ou,, J. Chen,, W. Chen,, Y. Zhu,, W. Xiao,, M. Xiao,, C. Cheng,: Multipoint magnetic field measurement based on magnetic fluid and FSI-FLRD. IEE. Sens. J. 21(16), 18249–18255 (2021)
https://doi.org/10.1109/JSEN.2021.3085666
71 M. Mochizuki,, N. Furukawa,, N. Nagaosa,: Erratum: Spin Model of Magnetostrictions in Multiferroic Mn Perovskites [Phys. Rev. Lett. 105, 037205 (2010)]. Phys. Rev. Lett. 106(11), 119901 (2011)
https://doi.org/10.1103/PhysRevLett.106.119901
72 A. Del Moral,, P.A. Algarabel,, J.I. Arnaudas,, L. Benito,, M. Ciria,, C. De la Fuente,, B. Garcia-Landa,, M.R. Ibarra,, C. Marquina,, L. Morellón,, J.M. De Teresa,: Magnetostriction effects. J. Magn. Magn. Mater. 242, 788–796 (2002)
https://doi.org/10.1016/S0304-8853(01)01063-0
73 N. Tiercelin,, V. Preobrazhensky,, P. Pernod,, A. Ostaschenko,: Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition. Appl. Phys. Lett. 92(6), 062904 (2008)
https://doi.org/10.1063/1.2841656
74 C. Shi,, J. Chen,, G. Wu,, X. Li,, J. Zhou,, F. Ou,: Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors. Opt. Express 14(12), 5098–5102 (2006)
https://doi.org/10.1364/OE.14.005098
75 F. Chen,, Y. Jiang,, H. Gao,, L. Jiang,: A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor. Opt. Lasers Eng. 71, 62–65 (2015)
https://doi.org/10.1016/j.optlaseng.2015.03.013
76 M.L. Filograno,, M. Pisco,, A. Catalano,, E. Forte,, M. Aiello,, A. Soricelli,, D. Davino,, C. Visone,, A. Cutolo,, A. Cusano,: Triaxial fiber optic magnetic field sensor for MRI applications. Eur. Workshop Opt. Fiber Sens. 9916, 106–109 (2016)
https://doi.org/10.1117/12.2236917
77 L.R. De Angulo,, J.S. Abell,, I.R. Harris,: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157, 508–509 (1996)
https://doi.org/10.1016/0304-8853(95)01088-2
78 D. Imaizumi,, T. Hayakawa,, M. Nogami,: Faraday rotation effects of Mn2+-modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 20(4), 740 (2002)
https://doi.org/10.1109/50.996598
79 L. Sun,, S. Jiang,, J.D. Zuegel,, J.R. Marciante,: Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)
https://doi.org/10.1364/OL.34.001699
80 M. Huang,, Z.C. Xu,: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81(1), 193–196 (2005)
https://doi.org/10.1007/s00339-004-2553-x
81 Z. Chen,, X. Wang,, J. Wang,, Y. Hang,: Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible–infrared optical isolators. Opt. Mater. 46, 12–15 (2015)
https://doi.org/10.1016/j.optmat.2015.03.034
82 I.L. Snetkov,, R. Yasuhara,, A.V. Starobor,, E.A. Mironov,, O.V. Palashov,: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51(7), 1–7 (2015)
https://doi.org/10.1109/JQE.2015.2431611
83 J. Jiang,, Z. Wu,, J. Sheng,, J. Zhang,, M. Song,, K. Ryu,, Z. Li,, Z. Hong,, Z. Jin,: A new approach to measure magnetic field of high-temperature superconducting coil based on magneto-optical Faraday Effect. IEEE Trans. Appl. Supercond. 31(1), 1–5 (2020)
https://doi.org/10.1109/TASC.2020.3032134
84 O. G. O. Babaev,, S. A. SMatyunin,, M. K. SVirchenko,: Modeling of the magneto-optical channel of a fiber-optic displacement sensor. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 1–6 (2018)
https://doi.org/10.1109/FarEastCon.2018.8602577
85 M. Ni, X. J., Huang,: Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE: 1–4 (2010)
https://doi.org/10.1109/APPEEC.2010.5448944
86 B. Shreeve,, R. Selfridge,, S. Schultz,, C. Gaeta,, R. Forber,: Magnetic field sensing using D-fiber coupled Bi: RIG slab.21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics. 7753: 77534S (2011)
https://doi.org/10.1117/12.885136
87 A.A.D. DaSilva,, H.P. Alves,, F.C. Marcolino,, J.F. DoNascimento,, J.F. Martins-Filho,: Computational modeling of optical fiber-based magnetic field sensors using the Faraday and Kerr magnetooptic effects. IEEE Trans. Magn. 56(9), 1–9 (2020)
https://doi.org/10.1109/TMAG.2020.3010108
88 J. Zubia,, L. Casado,, G. Aldabaldetreku,, A. Montero,, E. Zubia,, G. Durana,: Design and development of a low-cost optical current sensor. Sensors. 13(10), 13584–13595 (2013)
https://doi.org/10.3390/s131013584
89 Q. Jia,, Q. Han,, Z. Liang,, Z. Cheng,, H. Hu,, S. Wang,, K. Ren,, J. Jiang,, T. Liu,: Temperature compensation of optical fiber current sensors with a static bias. IEE. Sens. J. 22(1), 352–356 (2021)
https://doi.org/10.1109/JSEN.2021.3128937
90 H. Katsukawa,, H. Ishikawa,, H. Okajima,, T.W. Cease,: Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Delivery 11(2), 702–707 (1996)
https://doi.org/10.1109/61.489326
91 R. Malewski,: High-voltage current transformers with optical signal transmission. Opt. Eng. 20(1), 200154 (1981)
https://doi.org/10.1117/12.7972662
92 A. Papp,, H. Harms,: Magnetooptical current transformer. 1: principles. Appl. Opt. 19(22), 3729–3734 (1980)
https://doi.org/10.1364/AO.19.003729
93 J. Han,, H. Hu,, H. Wang,, B. Zhang,, X. Song,, Z. Ding,, X. Zhang,, T. Liu,: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber Bragg gratings. J. Lightwave Technol. 35(22), 4910–4915 (2017)
https://doi.org/10.1109/JLT.2017.2766119
94 Y. Qi,, M. Wang,, F. Jiang,, X. Zhang,, B. Cong,, Y. Liu,: Novel fiber optic current transformer with new phase modulation method. Photonic Sens. 10(3), 275–282 (2020)
https://doi.org/10.1007/s13320-020-0581-6
95 H. Gao,, G. Wang,, W. Gao,, S. Li,: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)
https://doi.org/10.1016/j.optcom.2020.125755
96 F. Bucholtz,, C.A. Villarruel,, A.R. Davis,, C.K. Kirkendall,, D.M. Dagenais,, J.A. McVicker,, T. Knudsen,: Multichannel fiber-optic magnetometer system for undersea measurements. J. Lightwave Technol. 13(7), 1385–1395 (1995)
https://doi.org/10.1109/50.400703
97 P. Coghill,, I. Bassett,, R. Barrow,, S. Rohatgi,, R. Vance,: Field trial of an electrically passive optical-fiber magnetometer. Appl. Opt. 34(31), 7258–7262 (1995)
https://doi.org/10.1364/AO.34.007258
98 X.L. Zhang,, X.J. Zhou,, Y.M. Hu,, M. Ni,, Y.M. Yu,: All polarization- maintaining fiber earth magnetic field sensor. Zhongguo Jiguang Chin. J. Laser. 32(11), 1515–1518 (2005)
99 Q. Zhao,, K. Zhou,, Z. Wu,, C. Yang,, Z. Feng,, H. Cheng,, S. Xu,: Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Opt. Lett. 43(1), 42–45 (2018)
https://doi.org/10.3847/1538-4357/aab555
100 J. Li,, Y. Deng,, X. Wang,, H. Lu,, Y. Liu,: Miniature wide-range three-axis vector atomic magnetometer. IEE. Sens. J. 21(21), 23943–23948 (2021)
https://doi.org/10.1109/JSEN.2021.3112522
101 A. Barrias,, J.R. Casas,, S. Villalba,: A review of distributed optical fiber sensors for civil engineering applications. Sensors. 16(5), 748 (2016)
https://doi.org/10.3390/s16050748
102 Z. Zhao,, M. Tang,, C. Lu,: Distributed multicore fiber sensors. Opto-Electron. Adv. 3(2), 02190024 (2020)
103 M. Li,, J. Zhou,, Z. Xiang,, F. Lv,: Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings. In: 2005 IEEE Networking. Tucson: IEEE: 490–495 (2005)
104 L. Palmieri,, A. Galtarossa,: Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers. J. Lightwave Technol. 29(21), 3178–3184 (2011)
https://doi.org/10.1109/JLT.2011.2167221
105 L. Palmieri,: Distributed polarimetric measurements for optical fiber sensing. Opt. Fiber Technol. 19(6), 720–728 (2013)
https://doi.org/10.1016/j.yofte.2013.07.015
106 A. Masoudi,, T.P. Newson,: Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 53(13), 2833–2838 (2014)
https://doi.org/10.1364/AO.53.002833
107 Y. Ou,, J. Chen,, W. Chen,, C. Cheng,, Y. Zhu,, W. Xiao,, H. Lv,: A quasi-distributed fiber magnetic field sensor based on frequency-shifted interferometry fiber cavity ringdown technique. Opt. Laser Technol. 146, 107607 (2022)
https://doi.org/10.1016/j.optlastec.2021.107607
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed