Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (4) : 41    https://doi.org/10.1007/s12200-022-00041-4
RESEARCH ARTICLE
Van der Waals epitaxial growth and optoelectronics of a vertical MoS2/WSe2 p–n junction
Yu Xiao1, Junyu Qu1, Ziyu Luo1, Ying Chen1, Xin Yang1, Danliang Zhang2, Honglai Li1, Biyuan Zheng1, Jiali Yi1, Rong Wu1, Wenxia You1, Bo Liu1, Shula Chen1(), Anlian Pan1()
1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2. School of Materials Science and Engineering, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China
 Download: PDF(1566 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted extensive attention due to their unique electronic and optical properties. In particular, TMDs can be flexibly combined to form diverse vertical van der Waals (vdWs) heterostructures without the limitation of lattice matching, which creates vast opportunities for fundamental investigation of novel optoelectronic applications. Here, we report an atomically thin vertical p–n junction WSe2/MoS2 produced by a chemical vapor deposition method. Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties. Back gate field effect transistor (FET) constructed using this p–n junction exhibits bipolar behaviors and a mobility of 9 cm2/(V·s). In addition, the photodetector based on MoS2/WSe2 heterostructures displays outstanding optoelectronic properties (R = 8 A/W, D* = 2.93 × 1011 Jones, on/off ratio of 104), which benefited from the built-in electric field across the interface. The direct growth of TMDs p–n vertical heterostructures may offer a novel platform for future optoelectronic applications.

Keywords MoS2      WSe2      Chemical vapor deposition (CVD)      Vertical heterostructure      Optoelectronic transistor     
Corresponding Author(s): Shula Chen,Anlian Pan   
Issue Date: 26 October 2022
 Cite this article:   
Yu Xiao,Junyu Qu,Ziyu Luo, et al. Van der Waals epitaxial growth and optoelectronics of a vertical MoS2/WSe2 p–n junction[J]. Front. Optoelectron., 2022, 15(4): 41.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00041-4
https://academic.hep.com.cn/foe/EN/Y2022/V15/I4/41
1 H. Zeng,, J. Dai,, W. Yao,, D. Xiao,, X. Cui,: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490–493 (2012)
https://doi.org/10.1038/nnano.2012.95
2 X. Duan,, C. Wang,, A. Pan,, R. Yu,, X. Duan,: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015)
https://doi.org/10.1039/C5CS00507H
3 K.L. Seyler,, J.R. Schaibley,, P. Gong,, P. Rivera,, A.M. Jones,, S. Wu,, J. Yan,, D.G. Mandrus,, W. Yao,, X. Xu,: Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10(5), 407–411 (2015)
https://doi.org/10.1038/nnano.2015.73
4 H. Li,, X. Wang,, X. Zhu,, X. Duan,, A. Pan,: Composition modulation in one-dimensional and two-dimensional chalcogenide semicon-ductor nanostructures. Chem. Soc. Rev. 47(20), 7504–7521 (2018)
https://doi.org/10.1039/C8CS00418H
5 W. Zheng,, B. Zheng,, C. Yan,, Y. Liu,, X. Sun,, Z. Qi,, T. Yang,, Y. Jiang,, W. Huang,, P. Fan,, F. Jiang,, W. Ji,, X. Wang,, A. Pan,: Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6(7), 1802204 (2019)
https://doi.org/10.1002/advs.201802204
6 Z. Luo,, W. Zheng,, N. Luo,, B. Liu,, B. Zheng,, X. Yang,, D. Liang,, J. Qu,, H. Liu,, Y. Chen,, Y. Jiang,, S. Chen,, X. Zou,, A. Pan,: Photoluminescence lightening: extraordinary oxygen modulated dynamics in WS2 monolayers. Nano. Lett. 22(5), 2112–2119 (2022)
https://doi.org/10.1021/acs.nanolett.2c00462
7 Z.H. Lu,, J.M. Baribeau,, D.J. Lockwood,: Quantum confinement and light emission in SiO2/Si superlattices. Nature 378(6554), 258–260 (1995)
https://doi.org/10.1038/378258a0
8 H. Liu,, X. Zhu,, X. Sun,, C. Zhu,, W. Huang,, X. Zhang,, B. Zheng,, Z. Zou,, Z. Luo,, X. Wang,, D. Li,, A. Pan,: Self-powered broad-band photodetectors based on vertically stacked WSe2/ Bi2Te3 p–n heterojunctions. ACS Nano 13(11), 13573–13580 (2019)
https://doi.org/10.1021/acsnano.9b07563
9 Y. Yuan, X. Zhang,, H. Liu,, T. Yang,, W. Zheng,, B. Zheng,, F. Jiang,, L. Li, D. Li,, X. Zhu,, A. Pan,: Growth of CdSe/MoS2 vertical heterostructures for fast visible-wavelength photodetectors. J. Alloys Compd. 815, 152309 (2020)
https://doi.org/10.1016/j.jallcom.2019.152309
10 H.B. Jeon,, G.H. Shin,, K.J. Lee,, S.Y. Choi,: Vertical-tunneling field-effect transistor based on WSe2-MoS2 heterostructure with ion gel dielectric. Adv. Electron. Mater. 6(7), 2000091 (2020).
https://doi.org/10.1002/aelm.202000091
11 Y. Gong,, J. Lin,, X. Wang,, G. Shi,, S. Lei,, Z. Lin,, X. Zou,, G. Ye,, R. Vajtai,, B.I. Yakobson,, H. Terrones,, M. Terrones,, B.K. Tay,, J. Lou,, S.T. Pantelides,, Z. Liu,, W. Zhou,, P.M. Ajayan,: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014)
https://doi.org/10.1038/nmat4091
12 M.Y. Li,, Y. Shi,, C.C. Cheng,, L.S. Lu,, Y.C. Lin,, H.L. Tang,, M.L. Tsai,, C.W. Chu,, K.H. Wei,, J.H. He,, W.H. Chang,, K. Suenaga,, L.J. Li,: NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 349(6247), 524–528 (2015)
https://doi.org/10.1126/science.aab4097
13 F. Li,, Y. Feng,, Z. Li,, C. Ma,, J. Qu,, X. Wu,, D. Li,, X. Zhang,, T. Yang,, Y. He,, H. Li,, X. Hu,, P. Fan,, Y. Chen,, B. Zheng,, X. Zhu,, X. Wang,, X. Duan,, A. Pan,: Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 31(27), e1901351 (2019)
https://doi.org/10.1002/adma.201901351
14 T. Yang,, B. Zheng,, Z. Wang,, T. Xu,, C. Pan,, J. Zou,, X. Zhang,, Z. Qi,, H. Liu,, Y. Feng,, W. Hu,, F. Miao,, L. Sun,, X. Duan,, A. Pan,: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1906 (2017)
https://doi.org/10.1038/s41467-017-02093-z
15 X. Wu,, X. Wang,, H. Li,, Z. Zeng,, B. Zheng,, D. Zhang,, F. Li,, X. Zhu,, Y. Jiang,, A. Pan,: Vapor growth of WSe2/WS2 hetero-structures with stacking dependent optical properties. Nano Res. 12(12), 3123–3128 (2019)
https://doi.org/10.1007/s12274-019-2564-8
16 F. Li,, B. Xu,, W. Yang,, Z. Qi,, C. Ma,, Y. Wang,, X. Zhang,, Z. Luo,, D. Liang,, D. Li,, Z. Li,, A. Pan,: High-performance opto-electronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 13(4), 1053–1059 (2020)
https://doi.org/10.1007/s12274-020-2743-7
17 W. Zhang,, M.H. Chiu,, C.H. Chen,, W. Chen,, A. Wee,: Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014)
https://doi.org/10.1021/nn503521c
18 Y. Huang,, H.X. Deng,, K. Xu,, Z.X. Wang,, Q.S. Wang,, F.M. Wang,, F. Wang,, X.Y. Zhan,, S.S. Li,, J.W. Luo,, J. He,: Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7(33), 14093–14099 (2015)
https://doi.org/10.1039/C5NR04174K
19 A. Sanne,, R. Ghosh,, A. Rai,, M.N. Yogeesh,, S.H. Shin,, A. Sharma,, K. Jarvis,, L. Mathew,, R. Rao,, D. Akinwande,, S. Banerjee,: Radio frequency transistors and circuits based on CVD MoS2. Nano. Lett. 15(8), 5039–5045 (2015)
https://doi.org/10.1021/acs.nanolett.5b01080
20 H. Kwon,, S. Garg,, J.H. Park,, Y. Jeong,, S. Yu,, S.M. Kim,, P. Kung,, S. Im,: Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. NPJ 2D Mater. Appl. 3(1), 9 (2019)
https://doi.org/10.1038/s41699-019-0091-9
21 R. Shidpour,, M. Manteghian,: A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2(8), 1429–1435 (2010)
https://doi.org/10.1039/b9nr00368a
22 H.-P. Komsa,, A.V. Krasheninnikov,: Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86(24), 241201 (2012)
https://doi.org/10.1103/PhysRevB.86.241201
23 F. Gong,, H. Fang,, P. Wang,, M. Su,, Q. Li,, J.C. Ho,, X. Chen,, W. Lu,, L. Liao,, J. Wang,, W. Hu,: Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. Nanotechnology. 28(48), 484002 (2017)
https://doi.org/10.1088/1361-6528/aa9172
24 Y. Chen,, X. Wang,, G. Wu,, Z. Wang,, H. Fang,, T. Lin,, S. Sun,, H. Shen,, W. Hu,, J. Wang,, J. Sun,, X. Meng,, J. Chu,: High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 14(9), 1870038 (2018)
https://doi.org/10.1002/smll.201870038
25 B. Liu,, B. Tang,, F. Lv,, Y. Zeng,, J. Liao,, S. Wang,, Q. Chen,: Photodetector based on heterostructure of two-dimensional WSe2/In2Se3. Nanotechnology 31(6), 065203 (2020)
https://doi.org/10.1088/1361-6528/ab519b
26 P. Wang,, S. Liu,, W. Luo,, H. Fang,, F. Gong,, N. Guo,, Z.G. Chen,, J. Zou,, Y. Huang,, X. Zhou,, J. Wang,, X. Chen,, W. Lu,, F. Xiu,, W. Hu,: Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29(16), 1604439 (2017)
https://doi.org/10.1002/adma.201604439
27 C. Li,, X. Yan,, X. Song,, W. Bao,, S. Ding,, D.W. Zhang,, P. Zhou,: WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment. Nanotechnology 28(41), 415201 (2017)
https://doi.org/10.1088/1361-6528/aa810f
[1] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed