Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (4) : 52    https://doi.org/10.1007/s12200-022-00053-0
RECOLLECTION
A “light chaser” and his dream of Optics Valley of China
Wei Hong(), Zhen Wang, Jianji Dong
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1307 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Wei Hong   
Issue Date: 04 January 2023
 Cite this article:   
Wei Hong,Zhen Wang,Jianji Dong. A “light chaser” and his dream of Optics Valley of China[J]. Front. Optoelectron., 2022, 15(4): 52.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00053-0
https://academic.hep.com.cn/foe/EN/Y2022/V15/I4/52
1 H. Macleod,: Program of the 1982 Annual Meeting of the Optical Society of America, Tucson Community Center, Tucson, Arizona October 18–22, 1982. J. Opt. Soc. Am. 72, 1718–1838(1982)
https://doi.org/10.1364/JOSA.72.001718
2 R.A. Elliott,, D. Huang,, R.K. DeFreez,, J.M. Hunt,, P.G. Rickman,: Picosecond optical pulse generation by impulse train current modulation of a semiconductor laser. Appl. Phys. Lett. 42(12), 1012–1014(1983)
https://doi.org/10.1063/1.93846
3 H. Wei,, D. Huang,, J. Sun,, D. Liu,: Numerical simulation of recovery enhancement by a CW pump light in semiconductor optical amplifiers. Opt. Commun. 214(1–6), 335–341(2002)
https://doi.org/10.1016/S0030-4018(02)02185-5
4 L. Huang,, D. Huang,, J. Sun,, D. Liu,: Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers. Opt. Commun. 223(4–6), 295–300(2003)
https://doi.org/10.1016/S0030-4018(03)01685-7
5 J. Dong,, X. Zhang,, D. Huang,: Experimental and theoretical study on gain dynamics of SOA. Acta Phy. Sinica 54(2), 763–767(2005)
https://doi.org/10.7498/aps.54.763
6 L. Huang,, D. Huang,, J. Chen,, D. Liu,, X. Zhang,: Analysis of a semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation. Semicond. Sci. Technol. 21(12), 1643–1650(2006)
https://doi.org/10.1088/0268-1242/21/12/024
7 E. Zhou,, X. Zhang,, D. Huang,: Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model. Opt. Express 15(14), 9096–9106(2007)
https://doi.org/10.1364/OE.15.009096
8 E. Zhou,, F. Öhman,, C. Cheng,, X. Zhang,, W. Hong,, J. Mørk,, D. Huang,: Reduction of patterning effects in SOA-based wave-length converters by combining cross-gain and cross-absorption modulation. Opt. Express 16(26), 21522–21528(2008)
https://doi.org/10.1364/OE.16.021522
9 L. Huang,, Y. Yu,, P. Tian,, D. Huang,: Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier. Semicond Sci. Technol. 24(1), 015009(2009)
https://doi.org/10.1088/0268-1242/24/1/015009
10 P. Tian,, L. Huang,, W. Hong,, D. Huang,: Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier. Appl. Opt. 49(26), 5005–5012(2010)
https://doi.org/10.1364/AO.49.005005
11 X. Huang,, C. Qin,, D. Huang,, X. Zhang,: Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(10), 1407–1413(2010)
https://doi.org/10.1109/JQE.2010.2047713
12 Y. Yi,, L. Huang,, X. Meng,, T. Peng,, D. Huang,: Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. J. Opt. Soc. Am. B 27(11), 2211–2217(2010)
https://doi.org/10.1364/JOSAB.27.002211
13 X. Zhang,, J. Sun,, D. Liu,, D. Huang,, H. Yi,: Study on conversion characteristics of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. Acta Phy. Sinica 49(4), 741–746(2000)
14 X. Zhang,, D. Huang,, J. Sun,, D. Liu,: A novel scheme for XGM wavelength conversion based on single-port-coupled SOA. Chin. Phys. 10(2), 124(2001)
https://doi.org/10.1088/1009-1963/10/2/308
15 X. Zhang,, D. Huang,, J. Sun,, D. Liu,: Single to 16-channel wave-length conversion at 10 Gb/s based on cross-gain modulation of ASE spectrum in SOA. Opt. Quantum Electron. 36(7), 627–634(2004)
https://doi.org/10.1023/B:OQEL.0000034680.00842.40
16 X. Fan,, X. Zhang,, D. Huang,: Theoretical and experimental investigations on a novel tunable all-optical wavelength converter. Acta Phy. Sinica 53(7), 2165–2169(2004)
https://doi.org/10.7498/aps.53.2165
17 P.L. Li,, D.X. Huang,, X.L. Zhang,, J. Chen,, L.R. Huang,: Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser. IEEE J. Quantum Electron. 41(4), 581–588(2005)
https://doi.org/10.1109/JQE.2004.840076
18 S. Fu,, J. Dong,, P. Shum,, L. Zhang,, X. Zhang,, D. Huang,: Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA. Opt. Express 14(17), 7587–7593(2006)
https://doi.org/10.1364/OE.14.007587
19 J. Dong,, S. Fu,, X. Zhang,, P. Shum,, L. Zhang,, D. Huang,: Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technol. Lett. 18(24), 2554–2556(2006)
https://doi.org/10.1109/LPT.2006.886864
20 J. Dong,, X. Zhang,, S. Fu,, S. Ping,, D. Huang,: Theoretical study of SOA-based wavelength conversion with NRZ and RZ format at 40 Gb/s. Chin. Phys. Lett. 24(4), 990–993(2007)
https://doi.org/10.1088/0256-307X/24/4/039
21 J. Dong,, X. Zhang,, S. Fu,, J. Xu,, P. Shum,, D. Huang,: Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778(2008)
https://doi.org/10.1109/JSTQE.2008.916248
22 W. Hong,, M. Li,, X. Zhang,, J. Sun,, D. Huang,: Dynamic analysis of all-optical wavelength conversion of differential phase-shift keyed signals based on semiconductor optical amplifier Mach-Zehnder interferometer. J. Lightwave Technol. 27(24), 5580–5589(2009)
https://doi.org/10.1109/JLT.2009.2031925
23 W. Hong,, D. Huang,, F. Cai,, Y. Wang,: Simultaneous clock component extraction and wavelength conversion of NRZ signal using an SOA loop mirror. IEEE Photonics Technol. Lett. 16(4), 1116–1118(2004)
https://doi.org/10.1109/LPT.2004.824669
24 Y. Yu,, X. Zhang,, D. Huang,: All-optical clock recovery from NRZ-DPSK signal. IEEE Photonics Technol. Lett. 18(22), 2356–2358(2006)
https://doi.org/10.1109/LPT.2006.885294
25 Y. Yu,, X. Zhang,, E. Zhou,, D. Huang,: All-optical clock recovery from NRZ signals at different bit rates via preprocessing by an optical filter. IEEE Photonics Technol. Lett. 19(24), 2039–2041(2007)
https://doi.org/10.1109/LPT.2007.908630
26 W. Hong,, M. Li,, X. Zhang,, J. Sun,, D. Huang,: Noise suppression mechanisms in regenerators based on XGC in an SOA with subsequent optical filtering. IEEE J. Sel. Top. Quantum Electron. 18(2), 935–949(2012)
https://doi.org/10.1109/JSTQE.2011.2143697
27 W. Yang,, T. Cao,, Y. Yu,, L. Shi,, X. Zhang,, D. Huang,: Theoretical analysis and experimental investigation of degenerate phase-sensitive amplification in a semiconductor optical amplifier. J. Lightwave Technol. 33(19), 4001–4007(2015)
https://doi.org/10.1109/JLT.2015.2461572
28 X. Zhang,, Y. Wang,, J. Sun,, D. Liu,, D. Huang,: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12(3), 361–366(2004)
https://doi.org/10.1364/OPEX.12.000361
29 X. Zhang,, J. Dong,, W. Ying,, D. Huang,: Experimental and theoretical investigation on novel all-optical logic AND gates. Acta Phy. Sinica 54(5), 2066–2071(2005)
https://doi.org/10.7498/aps.54.2066
30 C. Zhao,, X. Zhang,, H. Liu,, D. Liu,, D. Huang,: Tunable all-optical NOR gate at 10 Gb/s based on SOA fiber ring laser. Opt. Express 13(8), 2793–2798(2005)
https://doi.org/10.1364/OPEX.13.002793
31 J. Xu,, X. Zhang,, D. Liu,, D. Huang,: Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer. Opt. Express 14(22), 10708–10714(2006)
https://doi.org/10.1364/OE.14.010708
32 P.L. Li,, D.X. Huang,, X.L. Zhang,, G.X. Zhu,: Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. Opt. Express 14(24), 11839–11847(2006)
https://doi.org/10.1364/OE.14.011839
33 Y. Wang,, X. Zhang,, J. Dong,, D. Huang,: Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Opt. Express 15(23), 15080–15085(2007)
https://doi.org/10.1364/OE.15.015080
34 J. Dong,, S. Fu,, X. Zhang,, P. Shum,, L. Zhang,, J. Xu,, D. Huang,: Single SOA based all-optical adder assisted by optical band-pass filter: theoretical analysis and performance optimization. Opt. Commun. 270(2), 238–246(2007)
https://doi.org/10.1016/j.optcom.2006.09.053
35 J. Xu,, X. Zhang,, J. Dong,, D. Liu,, D. Huang,: High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Opt. Lett. 32(13), 1872–1874(2007)
https://doi.org/10.1364/OL.32.001872
36 J. Xu,, X. Zhang,, J. Dong,, D. Liu,, D. Huang,: All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier. Opt. Lett. 32(20), 3029–3031(2007)
https://doi.org/10.1364/OL.32.003029
37 J. Xu,, X. Zhang,, J. Dong,, D. Liu,, D. Huang,: Simultaneous all-optical and and nor Gates for NRZ differential phase-shift-keying signals. IEEE Photonics Technol. Lett. 20(8), 596–598(2008)
https://doi.org/10.1109/LPT.2008.918822
38 J. Dong,, X. Zhang,, J. Xu,, D. Huang,: 40Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt. Commun. 281(6), 1710–1715(2008)
https://doi.org/10.1016/j.optcom.2007.11.054
39 J. Xu,, X. Zhang,, Y. Zhang,, J. Dong,, D. Liu,, D. Huang,: Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. J. Lightwave Technol. 27(23), 5268–5275(2009)
https://doi.org/10.1109/JLT.2009.2028036
40 J. Dong,, X. Zhang,, D. Huang,: A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection. Opt. Express 17(10), 7725–7730(2009)
https://doi.org/10.1364/OE.17.007725
41 P.L. Li,, D.X. Huang,, X.L. Zhang,: SOA-based ultrafast multi-functional all-optical logic gates with PolSK modulated signals. IEEE J. Quantum Electron. 45(12), 1542–1550(2009)
https://doi.org/10.1109/JQE.2009.2025144
42 J. Dong,, B. Luo,, Y. Zhang,, D. Huang,, X. Zhang,: Reconfigurable photonic differentiators based on all-optical phase modulation and linear filtering. Opt. Commun. 284(24), 5792–5797(2011)
https://doi.org/10.1016/j.optcom.2011.08.032
43 J. Wang,, J. Sun,, Q. Sun,, D. Wang,, M. Zhou,, X. Zhang,, D. Huang,, M.M. Fejer,: All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier. Appl. Phys. Lett. 91(5), 051107(2007)
https://doi.org/10.1063/1.2761513
44 J. Dong,, X. Zhang,, J. Xu,, D. Huang,, S. Fu,, P. Shum,: 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Opt. Express 15(6), 2907–2914(2007)
https://doi.org/10.1364/OE.15.002907
45 L. Da,, X. Zhang,, D. Huang,: Experimental and theoretical investigation on novel all-optical format conversion based on a folded ultrafast nonlinear interferometer. Acta Phy. Sinica 56(4), 2223–2228(2007)
https://doi.org/10.7498/aps.56.2223
46 W. Hong,, D. Huang,, X. Zhang,, G. Zhu,: Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator. Opt. Express 15(26), 18357–18369(2007)
https://doi.org/10.1364/OE.15.018357
47 Y. Yu,, X. Zhang,, J.B. Rosas-Fernández,, D. Huang,, R.V. Penty,, I.H. White,: Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Opt. Express 16(20), 16166–16171(2008)
https://doi.org/10.1364/OE.16.016166
48 J. Dong,, X. Zhang,, J. Xu,, D. Huang,, S. Fu,, P. Shum,: Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Opt. Lett. 32(10), 1223–1225(2007)
https://doi.org/10.1364/OL.32.001223
49 J. Dong,, X. Zhang,, J. Xu,, D. Huang,: All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier. Opt. Lett. 32(15), 2158–2160(2007)
https://doi.org/10.1364/OL.32.002158
50 G. Chen,, D. Huang,, X. Zhang,, H. Cao,: Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber. Opt. Lett. 33(6), 554–556(2008)
https://doi.org/10.1364/OL.33.000554
51 L. Zhou,, X. Zhang,, E. Xu,, D. Huang,: Q value analysis of a first-order IIR microwave photonic filter based on SOA. Acta Phy. Sinica 58(2), 1036–1041(2009)
https://doi.org/10.7498/aps.58.1036
52 E. Xu,, X. Zhang,, L. Zhou,, Z. Yu,, D. Huang,: Hybrid active-passive microwave photonic filter with high quality factor. Chin. Phys. Lett. 26(9), 094208(2009)
https://doi.org/10.1088/0256-307X/26/9/094208
53 H. Lv,, Y. Yu,, T. Shu,, D. Huang,, S. Jiang,, L.P. Barry,: Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser. Opt. Express 18(7), 7219–7227(2010)
https://doi.org/10.1364/OE.18.007219
54 E. Xu,, X. Zhang,, L. Zhou,, Y. Zhang,, Y. Yu,, X. Li,, D. Huang,: Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt. Lett. 35(8), 1242–1244(2010)
https://doi.org/10.1364/OL.35.001242
55 E. Xu,, X. Zhang,, L. Zhou,, Y. Zhang,, Y. Yu,, X. Li,, D. Huang,: All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter. J. Lightwave Technol. 28(16), 2358–2365(2010)
https://doi.org/10.1109/JLT.2010.2045102
56 J. Dong,, Y. Yu,, Y. Zhang,, X. Li,, D. Huang,, X. Zhang,: All-optical binary phase-coded UWB signal generation for multiuser UWB communications. Opt. Express 19(11), 10587–10594(2011)
https://doi.org/10.1364/OE.19.010587
57 X. Cai,, D. Huang,, X. Zhang,: Numerical analysis of polarization splitter based on vertically coupled microring resonator. Opt. Express 14(23), 11304–11311(2006)
https://doi.org/10.1364/OE.14.011304
58 X. Zhang,, D. Huang,, X. Zhang,: Transmission characteristics of dual microring resonators coupled via 3×3 couplers. Opt. Express 15(21), 13557–13573(2007)
https://doi.org/10.1364/OE.15.013557
59 Y. Ding,, X. Zhang,, X. Zhang,, D. Huang,: Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators. Opt. Commun. 281(21), 5315–5321(2008)
https://doi.org/10.1016/j.optcom.2008.07.030
60 Y. Ding,, X. Zhang,, X. Zhang,, D. Huang,: Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit. Opt. Express 17(15), 12835–12848(2009)
https://doi.org/10.1364/OE.17.012835
61 Y. Ding,, X. Zhang,, X. Zhang,, D. Huang,: Elastic polarization converter based on dual microring resonators. IEEE J. Quantum Electron. 45(8), 1033–1038(2009)
https://doi.org/10.1109/JQE.2009.2018481
62 Y. Ding,, C. Peucheret,, M. Pu,, B. Zsigri,, J. Seoane,, L. Liu,, J. Xu,, H. Ou,, X. Zhang,, D. Huang,: Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Opt. Express 18(20), 21121–21130(2010)
https://doi.org/10.1364/OE.18.021121
63 Y. Ding,, J. Xu,, C. Peucheret,, M. Pu,, L. Liu,, J. Seoane,, H. Ou,, X. Zhang,, D. Huang,: Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator. J. Light-wave Technol. 29(5), 677–684(2011)
https://doi.org/10.1109/JLT.2010.2101049
64 Y. Ding,, M. Pu,, L. Liu,, J. Xu,, C. Peucheret,, X. Zhang,, D. Huang,, H. Ou,: Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt. Express 19(7), 6462–6470(2011)
https://doi.org/10.1364/OE.19.006462
65 Y. Ding,, H. Hu,, M. Galili,, J. Xu,, L. Liu,, M. Pu,, H.C. Mulvad,, L.K. Oxenløwe,, C. Peucheret,, P. Jeppesen,, X. Zhang,, D. Huang,, H. Ou,: Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Opt. Express 19(7), 6471–6477(2011)
https://doi.org/10.1364/OE.19.006471
66 J. Dong,, A. Zheng,, D. Gao,, S. Liao,, L. Lei,, D. Huang,, X. Zhang,: High-order photonic differentiator employing on-chip cascaded microring resonators. Opt. Lett. 38(5), 628–630(2013)
https://doi.org/10.1364/OL.38.000628
67 Y. Ding,, B. Huang,, C. Peucheret,, J. Xu,, H. Ou,, X. Zhang,, D. Huang,: Ultra-wide band signal generation using a coupling-tunable silicon microring resonator. Opt. Express 22(5), 6078–6085(2014)
https://doi.org/10.1364/OE.22.006078
68 D. Huang,: Semiconductor Optoelectronics. University of Electronic Science and Technology Press (in Chinese), Chengdu (1989)
69 D. Huang,: Semiconductor Optoelectronics, 2nd edn. Publishing House of Electronics Industry (in Chinese), Beijing (2013)
70 D. Huang,, L. Huang,, W. Hong,: Semiconductor Optoelectronics, 3rd edn. Publishing House of Electronics Industry (in Chinese), Beijing (2018)
71 Z. Zhou,, D. Huang,: Research and development at Wuhan National Laboratory for Optoelectronics. In: Proceedings of SPIE Optoelectronic Materials and Devices for Optical Communications. SPIE, 602009(2005)
https://doi.org/10.1117/12.636515
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed