Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (1) : 4    https://doi.org/10.1007/s12200-023-00059-2
RESEARCH ARTICLE
High-resolution silicon photonic sensor based on a narrowband microwave photonic filter
Haiyan Luo1,2, Lu Xu3(), Jie Yan3, Qiansheng Wang3, Wenwu Wang1, Xi Xiao3
1. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation, Wuhan 430074, China
 Download: PDF(1447 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave photonic sensors are promising for improving sensing resolution and speed of optical sensors. In this paper, a high-sensitivity, high-resolution temperature sensor based on microwave photonic filter (MPF) is proposed and demonstrated. A micro-ring resonator (MRR) based on silicon-on-insulator is used as the sensing probe to convert the wavelength shift caused by temperature change to microwave frequency variation via the MPF system. By analyzing the frequency shift with high-speed and high-resolution monitors, the temperature change can be detected. The MRR is designed with multi-mode ridge waveguides to reduce propagation loss and achieves an ultra-high Q factor of 1.01 × 106. The proposed MPF has a single passband with a narrow bandwidth of 192 MHz. With clear peak-frequency shift, the sensitivity of the MPF-based temperature sensor is measured to be 10.22 GHz/℃. Due to higher sensitivity and ultra-narrow bandwidth of the MPF, the sensing resolution of the proposed temperature sensor is as high as 0.019 ℃.

Keywords Micro-ring resonator      Microwave photonic filter      Silicon photonics      Microwave photonic sensor     
Corresponding Author(s): Lu Xu   
Issue Date: 20 April 2023
 Cite this article:   
Haiyan Luo,Lu Xu,Jie Yan, et al. High-resolution silicon photonic sensor based on a narrowband microwave photonic filter[J]. Front. Optoelectron., 2023, 16(1): 4.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00059-2
https://academic.hep.com.cn/foe/EN/Y2023/V16/I1/4
1 B. Culshaw, : Optical fiber sensor technologies: opportunities and-perhaps-pitfalls. J. Lightwave Technol. 22 (1), 39- 50 (2004)
2 C.K.Y. Leung, , K.T. Wan, , L. Chen, : A novel optical fiber sensor for steel corrosion in concrete structures. Sensors (Basel) 8 (3), 1960- 1976 (2008).
3 S. Okazaki, , H. Nakagawa, , S. Asakura, , Y. Tomiuchi, , N. Tsuji, , H. Murayama, , M. Washiya, : Sensing characteristics of an optical fiber sensor for hydrogen leak. Sens. Actuators B Chem. 93 (1), 142- 147 (2003)
4 Y. Tian, , W. Wang, , N. Wu, , X. Zou, , X. Wang, : Tapered optical fiber sensor for label-free detection of biomolecules. Sensors (Basel) 11 (4), 3780- 3790 (2011)
5 H.E. Joe, , H. Yun, , S.H. Jo, , M.B.G. Jun, , B.K. Min, : A review on optical fiber sensors for environmental monitoring. Int. J. Precision Eng. Manuf. Green Technol. 5 (1), 173- 191 (2018)
6 P. Roriz, , S. Silva, , O. Frazão, , S. Novais, : Optical fiber temperature sensors and their biomedical applications. Sensors (Basel) 20 (7), 2113 (2020)
7 L. Li, , X. Yi, , S.X. Chew, , S. Song, , L. Nguyen, , R.A. Minasian, : Double-pass microwave photonic sensing system based on low-coherence interferometry. Opt. Lett. 44 (7), 1662- 1665 (2019)
8 B. Nie, , Y. Ruan, , Y. Yu, , Q. Guo, , J. Xi, , J. Tong, : Period-one microwave photonic sensing by a laser diode with optical feed-back. J. Lightwave Technol. 38 (19), 5423- 5429 (2020)
9 Y. Wang, , X. Ni, , M. Wang, , Y. Cui, , Q. Shi, : Demodulation of an optical fiber MEMS pressure sensor based on single band-pass microwave photonic filter. Opt. Express 25 (2), 644- 653 (2017)
10 L. Xu, , X. Hu, , Y. Zhang, , J. Yi, , Y. Yu, , X. Xiao, , Y. Yu, : A highly sensitive and precise temperature sensor based on optoelectronic oscillator. Opt. Commun. 483 (12), 6625 (2021)
11 N. Zhang, , M. Wang, , B. Wu, , M. Han, , B. Yin, , J. Cao, , C. Wang, : Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEEE Sens. J. 20 (13), 7053- 7059 (2020)
12 D. Feng, , L. Kai, , T. Zhu, , Y. Gao, , L. Gao, , J. Zhang, : High-precision strain-insensitive temperature sensor based on an optoelectronic oscillator. Opt. Express 27 (26), 37532- 37540 (2019)
13 J. Luo, , X. Cai, , H. Wang, , H. Fu, : Temperature sensing technique by using a microwave photonics filter based on an actively mode-locked fiber laser. Microw. Opt. Technol. Lett. 63 (10), 2535- 2540 (2021)
14 D. Xiao, , L. Shao, , C. Wang, , W. Lin, , F. Yu, , G. Wang, , T. Ye, , W. Wang, , M.I. Vai, : Optical sensor network interrogation system based on nonuniform microwave photonic filters. Opt. Express 29 (2), 2564- 2576 (2021)
15 A.L. Ricchiuti, , D. Barrera, , S. Sales, , L. Thevenaz, , J. Capmany, : Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques. Opt. Express 21 (23), 28175- 28181 (2013)
16 Z. Xu, , X. Shu, , H. Fu, : Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect. Opt. Express 25 (18), 21559- 21566 (2017)
17 Y. Zhang, , J. Zou, , Z. Cao, , J.J. He, : Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer. Opt. Lett. 44 (2), 299- 302 (2019)
18 A.W. Elshaari, , I.E. Zadeh, , K.D. Jöns, , V. Zwiller, : Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J. 8 (3), 1- 9 (2016)
19 L. Li, , S.X. Chew, , S. Song, , K. Powell, X. Yi, , L. Nguyen, , R. Minasian, : Reflective microring sensing probe based on narrowband microwave photonic notch filter. In: International Topical Meeting on Microwave Photonics (MWP), 2018, pp. 1- 4
20 J. Liu, , H. Deng, , W. Zhang, , J. Yao, : On-chip sensor for simultaneous temperature and refractive index measurements based on a dual-passband microwave photonic filter. J. Lightwave Technol. 36 (18), 4099- 4105 (2018)
21 X. Tian, , K. Powell, , L. Li, , S. Chew, , X. Yi, , L. Nguyen, , R. Minasian, : Silicon photonic microdisk sensor based on microwave photonic filtering technique. In: International Topical Meeting on Microwave Photonics (MWP), 2019, pp. 1- 4
22 H. Deng, , W. Zhang, , J. Yao, : High-speed and high-resolution interrogation of a silicon photonic microdisk sensor based on microwave photonic filtering. J. Lightwave Technol. 36 (19), 4243- 4249 (2018)
23 W. Bogaerts, , P. De Heyn, , T. Van Vaerenbergh, , K. De Vos, , S.K. Selvaraja, , T. Claes, , P. Dumon, , P. Bienstman, , D. Van Thourhout, , R. Baets, : Silicon microring resonators. Laser Photonics Rev. 6 (1), 47- 73 (2012)
24 B. Jalali, , S. Fathpour, : Silicon photonics. J. Lightwave Technol. 24 (12), 4600- 4615 (2006)
25 G. Li, , J. Yao, , H. Thacker, , A. Mekis, , X. Zheng, , I. Shubin, , Y. Luo, , J.H. Lee, , K. Raj, , J.E. Cunningham, , A.V. Krishnamoorthy, : Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20 (11), 12035- 12039 (2012)
26 H.T. Kim, , M. Yu, : Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 24 (9), 9501- 9510 (2016)
27 G. Cocorullo, , F.G.D. Corte, , I. Rendina, : Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 74 (22), 3338- 3340 (1999)
28 L. Zhang, , L. Jie, , M. Zhang, , Y. Wang, , Y. Xie, , Y. Shi, , D. Dai, : Ultrahigh-Q silicon racetrack resonators. Photon. Res. 8 (5), 684- 689 (2020)
[1] Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin. Co-packaged optics (CPO): status, challenges, and solutions[J]. Front. Optoelectron., 2023, 16(1): 1-.
[2] Xudong Gao, Zhenzhu Xu, Yupeng Zhu, Chengkun Yang, Shoubao Han, Zongming Duan, Fan Zhang, Jianji Dong. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum[J]. Front. Optoelectron., 2023, 16(1): 6-.
[3] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[4] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[5] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[6] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[7] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[8] Rajiv KUMAR, Ajay KUMAR, Poonam SINGH, Niranjan KUMAR. All-optical pseudo noise sequence generator using a micro-ring resonator[J]. Front. Optoelectron., 2021, 14(3): 365-373.
[9] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[10] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[11] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[12] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[13] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[14] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[15] Ning ZHANG,Kenan CICEK,Jiangbo ZHU,Shimao LI,Huanlu LI,Marc SOREL,Xinlun CAI,Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed