Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (1) : 6    https://doi.org/10.1007/s12200-023-00061-8
RESEARCH ARTICLE
Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum
Xudong Gao1, Zhenzhu Xu1(), Yupeng Zhu1, Chengkun Yang1, Shoubao Han1, Zongming Duan1, Fan Zhang2, Jianji Dong2
1. Anhui Province Engineering Laboratory for Antennas and Microwave, East China Research Institute of Electronic Engineering, Hefei 230000, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1399 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to the advantages of low propagation loss, wide operation bandwidth, continuous delay tuning, fast tuning speed, and compact footprints, chirped Bragg grating waveguide has great application potential in wideband phased array beamforming systems. However, the disadvantage of large group delay error hinders their practical applications. The nonlinear group delay spectrum is one of the main factors causing large group delay errors. To solve this problem, waveguides with nonlinear gradient widths are adopted in this study to compensate for the nonlinear effect of the grating apodization on the mode effective index. As a result, a linear group delay spectrum is obtained in the experiment, and the group delay error is halved.

Keywords Bragg gratings      Silicon photonics      True time delay     
Corresponding Author(s): Zhenzhu Xu   
Issue Date: 20 April 2023
 Cite this article:   
Xudong Gao,Zhenzhu Xu,Yupeng Zhu, et al. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum[J]. Front. Optoelectron., 2023, 16(1): 6.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00061-8
https://academic.hep.com.cn/foe/EN/Y2023/V16/I1/6
1 H. Yang, , B. Yun, : A six bit silicon nitride optical true time delay line for Ka-band phased array antenna. J. Phys. Conf. Ser. 1634 (1), 012173 (2020)
2 J. Jeong, , I. Yom, , J. Kim, , W. Lee, , C.A. Lee, : 6-18-GHz GaAs multifunction chip with 8-bit true time delay and 7-bit amplitude control. IEEE Trans. Microw. Theory Tech. 66 (5), 2220- 2230 (2018)
3 G. Choo, , C.K. Madsen, , S. Palermo, , K. Entesari, : Automatic monitor-based tuning of an RF silicon photonic 1×4 asymmetric binary tree true-time-delay beamforming network. J. Lightwave Technol. 36 (22), 5263- 5275 (2018)
4 X. Ye, , F. Zhang, , S. Pan, : Compact optical true time delay beam-former for a 2D phased array antenna using tunable dispersive elements. Opt. Lett. 41 (17), 3956- 3959 (2016)
5 C. Wang, , M. Zhang, , X. Chen, , M. Bertrand, , A. Shams-Ansari, , S. Chandrasekhar, , P. Winzer, , M. Lončar, : Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562 (7725), 101- 104 (2018)
6 M. He, , M. Xu, , Y. Ren, , J. Jian, , Z. Ruan, , Y. Xu, , S. Gao, , S. Sun, , X. Wen, , L. Zhou, , L. Liu, , C. Guo, , H. Chen, , S. Yu, , L. Liu, , X. Cai, : High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit· s-1 and beyond. Nat. Photonics 13 (5), 359- 364 (2019)
7 S. Lischke, , A. Peczek, , J.S. Morgan, , K. Sun, , D. Steckler, , Y. Yamamoto, , F. Korndörfer, , C. Mai, , S. Marschmeyer, , M. Fraschke, , A. Krüger, , A. Beling, , L. Zimmermann, : Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 16 (3), 925- 931 (2022)
8 M. Li, , N. Zhu, : Recent advances in microwave photonics. Front. Optoelectron. 9 (2), 160- 185 (2016)
9 J. Xie, , L. Zhou, , Z. Li, , J. Wang, , J. Chen, : Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express 22 (19), 22707- 22715 (2014)
10 X. Wang, , L. Zhou, , R. Li, , J. Xie, , L. Lu, , K. Wu, , J. Chen, : Continuously tunable ultra-thin silicon waveguide optical delay line. Optica 4 (5), 507- 515 (2017)
11 L. Song, , T. Chen, , W. Liu, , H. Liu, , Y. Peng, , Z. Yu, , H. Li, , Y. Shi, , D. Dai, : Toward calibration-free Mach-Zehnder switches for next-generation silicon photonics. Photon. Res. 10 (3), 793- 801 (2022)
12 C. Xiang, , M.L. Davenport, , J.B. Khurgin, , P.A. Morton, , J.E. Bowers, : Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron. 24 (4), 5900109 (2018)
13 D. Lin, , X. Xu, , P. Zheng, , H. Yang, , G. Hu, , B. Yun, , Y. Cui, : A tunable optical delay line based on cascaded silicon nitride microrings for Ka-band beamforming. IEEE Photonics J. 11 (5), 5503210 (2019)
14 C. Chung, , X. Xu, , G. Wang, , Z. Pan, , R.T. Chen, : On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide. Appl. Phys. Lett. 112 (7), 071104 (2018)
15 E. Cassan, , X.L. Roux, , C. Caer, , R. Hao, , D. Bernier, , D. Marris-Morini, , L. Vivien, : Silicon slow light photonic crystals structures: present achievements and future trends. Front. Optoelectron. China 4 (3), 243- 253 (2011)
16 S. Kaushal, , R. Cheng, , M. Ma, , A. Mistry, , M. Burla, , L. Chrostowski, , J. Azaña, : Optical signal processing based on silicon photonics waveguide Bragg gratings. Front Optoelectron. 11 (2), 163- 188 (2018)
17 Z. Du, , C. Xiang, , T. Fu, , M. Chen, , S. Yang, , J.E. Bowers, , H. Chen, : Silicon nitride chirped spiral Bragg gratings with large group delay. APL Photonics 5 (10), 101302 (2020)
18 B. Ortega, , J. Mora, , R. Chulia, : Optical beamformer for 2-D phased array antenna with subarray partitioning capability. IEEE Photonics J. 8 (3), 6600509 (2016)
19 X. Gao, , Y. Zhu, , Y. Chong, , Z. Xu, , L. Mei, , J. Cao, , F. Zhang, , J. Dong, : Integrated channel-shared optical true time delay line array based on gratings-assisted contradirectional couplers for phased array antennas. Proc. SPIE 11763, 117633W (2021)
20 Y. Sun, , D. Wang, , C. Deng, , M. Lu, , L. Huang, , G. Hu, , B. Yun, , R. Zhang, , M. Li, , J. Dong, , A. Wang, , Y. Cui, : Large group delay in silicon-on-insulator chirped spiral Bragg gratings waveguide. IEEE Photonics J. 13 (5), 5500205 (2021)
21 W. Shi, , V. Veerasubramanian, , D. Patel, , D.V. Plant, : Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings. Opt. Lett. 39 (3), 701- 703 (2014)
22 X. Wang, , Y. Zhao, , Y. Ding, , S. Xiao, , J. Dong, : Tunable optical delay line based on integrated gratings-assisted contradirectional couplers. Photon. Res. 6 (9), 880- 886 (2018)
23 F. Zhang, , J. Dong, , Y. Zhu, , X. Gao, , X. Zhang, : Integrated optical true time delay network based on gratings-assisted contradirectional couplers for phased array antennas. IEEE J. Sel. Top. Quantum Electron. 26 (5), 8302407 (2020)
[1] Haiyan Luo, Lu Xu, Jie Yan, Qiansheng Wang, Wenwu Wang, Xi Xiao. High-resolution silicon photonic sensor based on a narrowband microwave photonic filter[J]. Front. Optoelectron., 2023, 16(1): 4-.
[2] Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin. Co-packaged optics (CPO): status, challenges, and solutions[J]. Front. Optoelectron., 2023, 16(1): 1-.
[3] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[4] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[5] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[6] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[7] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[8] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[9] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[10] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[11] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[12] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[13] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[14] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[15] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed