Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (1) : 7    https://doi.org/10.1007/s12200-023-00062-7
RESEARCH ARTICLE
Self-supervised zero-shot dehazing network based on dark channel prior
Xinjie Xiao1(), Yuanhong Ren2(), Zhiwei Li1(), Nannan Zhang1(), Wuneng Zhou2()
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2. College of Information Science and Technology, Donghua University, Shanghai 201620, China
 Download: PDF(2395 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.

Keywords Image dehazing      Quad-tree algorithm      Self-supervised      Zero-shot     
Corresponding Author(s): Xinjie Xiao,Yuanhong Ren,Zhiwei Li,Nannan Zhang,Wuneng Zhou   
Issue Date: 20 April 2023
 Cite this article:   
Xinjie Xiao,Yuanhong Ren,Zhiwei Li, et al. Self-supervised zero-shot dehazing network based on dark channel prior[J]. Front. Optoelectron., 2023, 16(1): 7.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00062-7
https://academic.hep.com.cn/foe/EN/Y2023/V16/I1/7
1 J. Bai, , J. Zhu, , R. Zhao, , F. Gu, , J. Wang, : Area-based non-maximum suppression algorithm for multi-object fault detection. Front. Optoelectron 13 (4), 425- 432 (2020)
2 L. Sun, , S. Zhao, , G. Li, , B. Liu, : High accuracy object detection via bounding box regression network. Front. Optoelectron 12 (3), 324- 331 (2019)
3 C. Sakaridis, , D. Dai, , S. Hecker, , L. Van Gool, : Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 687- 704 (2018)
4 X. Li, , G. Liu, , S. Sun, : Efficient point cloud segmentation approach using energy optimization with geometric features for 3d scene understanding. JOSA A 38 (1), 60- 70 (2021)
5 B. Cai, , X. Xu, , K. Jia, , C. Qing, , D. Tao, : Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process 25 (11), 5187- 5198 (2016)
6 B. Li, , X. Peng, , Z. Wang, , J. Xu, , D. Feng, : Aod-net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4770- 4778 (2017)
7 D. Chen, , M. He, , Q. Fan, , J. Liao, , L. Zhang, , D. Hou, , L. Yuan, , G. Hua, : Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375- 1383 (2019)
8 Y. Qu, , Y. Chen, , J. Huang, , Y. Xie, : Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160- 8168 (2019)
9 G. Tang, , L. Zhao, , R. Jiang, , X. Zhang, : Single image dehazing via lightweight multi-scale networks. In: IEEE International Conference on Big Data (big Data), pp. 5062- 5069 (2019)
10 A. Suresh, , J. Nisha, , V.P. Gopi, : Rich feature distillation with feature affinity module for efficient image dehazing. Optik 267, 169656 (2022)
11 L. Xu, , Y. Wei, : “Pyramid deep dehazing”: an unsupervised single image dehazing method using deep image prior. Opt. Laser Technol. 148, 107788 (2022)
12 A.A. Hendriksen, , D.M. Pelt, , K.J. Batenburg, : Noise2iInverse: self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320- 1335 (2020)
13 L. Chen, , P. Bentley, , K. Mori, , K. Misawa, , M. Fujiwara, , D. Rueckert, : Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)
14 F. Wang, , Y. Bian, , H. Wang, , M. Lyu, , G. Pedrini, , W. Osten, , G. Barbastathis, , G. Situ, : Phase imaging with an untrained neural network. Light Sci. Appl. 9 (1), 1- 7 (2020)
15 B. Li, , Y. Gou, , J.Z. Liu, , H. Zhu, , J.T. Zhou, , X. Peng, : Zero-shot image dehazing. IEEE Trans. Image Process 29, 8457- 8466 (2020)
16 E.J. McCartney, : Optics of the atmosphere: scattering by molecules and particles. New York, John Wiley and Sons Inc 1976, 421 (1976)
17 S.G. Narasimhan, , S.K. Nayar, : Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25 (6), 713- 724 (2003)
18 K. He, , J. Sun, , X. Tang, : Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33 (12), 2341- 2353 (2011)
19 Z. Li, , J. Zheng, : Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process 24 (12), 5432- 5441 (2015)
20 S. Satrasupalli, , E. Daniel, , S.R. Guntur, : Single image haze removal based on transmission map estimation using encoder-decoder based deep learning architecture. Optik 248, 168197 (2021)
21 R.T. Tan, : Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1- 8 (2008). IEEE
22 D. Berman, , T. Treibitz, , S. Avidan, : Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674- 1682 (2016)
23 O. Ronneberger, , P. Fischer, , T. Brox, : U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234- 241 (2015). Springer
24 K. He, , J. Sun, , X. Tang, : Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell 35 (6), 1397- 1409 (2012)
25 G. Chen, , L. Li, , W. Jin, , S. Qiu, , H. Guo, : Weighted sparse representation and gradient domain guided filter pyramid image fusion based on low-light-level dual-channel camera. IEEE Photonics J. 11 (5), 1- 15 (2019)
26 W. Wang, , X. Yuan, , X. Wu, , Y. Liu, : Fast image dehazing method based on linear transformation. IEEE Trans. Multimedia 19 (6), 1142- 1155 (2017)
27 G. Gao, , H. Huang, , C. Fu, , Z. Li, , R. He, : Information bottleneck disentanglement for identity swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3404- 3413 (2021)
28 B. Li, , W. Ren, , D. Fu, , D. Tao, , D. Feng, , W. Zeng, , Z. Wang, : Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process 28 (1), 492- 505 (2019)
29 C. Ancuti, , C.O. Ancuti, , R. Timofte, , C. De Vleeschouwer, : I-haze: a dehazing benchmark with real hazy and haze-free indoor images. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 620- 631 (2018). Springer
30 C.O. Ancuti, , C. Ancuti, , R. Timofte, , C. De Vleeschouwer, : O-haze: a dehazing benchmark with real hazy and haze-free out-door images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754- 762 (2018)
31 A. Mittal, , R. Soundararajan, , A.C. Bovik, : Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20 (3), 209- 212 (2012)
32 Z. Li, , H. Shu, , C. Zheng, : Multi-scale single image dehazing using laplacian and gaussian pyramids. IEEE Trans. Image Process 30, 9270- 9279 (2021)
33 M. Ju, , C. Ding, , W. Ren, , Y. Yang, , D. Zhang, , Y.J. Guo, : Ide: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process 30, 2180- 2192 (2021)
34 J. Shin, , H. Park, , J. Paik, : Region-based dehazing via dual-supervised triple-convolutional network. IEEE Trans. Multimedia 24, 245- 260 (2021)
35 S. Zhao, , L. Zhang, , Y. Shen, , Y. Zhou, : Refinednet: a weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process 30, 3391- 3404 (2021)
36 J. Li, , Y. Li, , L. Zhuo, , L. Kuang, , T. Yu, : Usid-net: Unsupervised single image dehazing network via disentangled representations. IEEE Trans. Multimedia (2022)
37 D.P. Kingma, , J. Ba, : Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412. 6980 (2014)
38 D. Ulyanov, , A. Vedaldi, , V. Lempitsky, : Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446- 9454 (2018)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed