|
|
|
Self-supervised zero-shot dehazing network based on dark channel prior |
Xinjie Xiao1( ), Yuanhong Ren2( ), Zhiwei Li1( ), Nannan Zhang1( ), Wuneng Zhou2( ) |
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. College of Information Science and Technology, Donghua University, Shanghai 201620, China |
|
|
|
|
Abstract Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.
|
| Keywords
Image dehazing
Quad-tree algorithm
Self-supervised
Zero-shot
|
|
Corresponding Author(s):
Xinjie Xiao,Yuanhong Ren,Zhiwei Li,Nannan Zhang,Wuneng Zhou
|
|
Issue Date: 20 April 2023
|
|
| 1 |
J. Bai, , J. Zhu, , R. Zhao, , F. Gu, , J. Wang, : Area-based non-maximum suppression algorithm for multi-object fault detection. Front. Optoelectron 13 (4), 425- 432 (2020)
|
| 2 |
L. Sun, , S. Zhao, , G. Li, , B. Liu, : High accuracy object detection via bounding box regression network. Front. Optoelectron 12 (3), 324- 331 (2019)
|
| 3 |
C. Sakaridis, , D. Dai, , S. Hecker, , L. Van Gool, : Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 687- 704 (2018)
|
| 4 |
X. Li, , G. Liu, , S. Sun, : Efficient point cloud segmentation approach using energy optimization with geometric features for 3d scene understanding. JOSA A 38 (1), 60- 70 (2021)
|
| 5 |
B. Cai, , X. Xu, , K. Jia, , C. Qing, , D. Tao, : Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process 25 (11), 5187- 5198 (2016)
|
| 6 |
B. Li, , X. Peng, , Z. Wang, , J. Xu, , D. Feng, : Aod-net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4770- 4778 (2017)
|
| 7 |
D. Chen, , M. He, , Q. Fan, , J. Liao, , L. Zhang, , D. Hou, , L. Yuan, , G. Hua, : Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375- 1383 (2019)
|
| 8 |
Y. Qu, , Y. Chen, , J. Huang, , Y. Xie, : Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160- 8168 (2019)
|
| 9 |
G. Tang, , L. Zhao, , R. Jiang, , X. Zhang, : Single image dehazing via lightweight multi-scale networks. In: IEEE International Conference on Big Data (big Data), pp. 5062- 5069 (2019)
|
| 10 |
A. Suresh, , J. Nisha, , V.P. Gopi, : Rich feature distillation with feature affinity module for efficient image dehazing. Optik 267, 169656 (2022)
|
| 11 |
L. Xu, , Y. Wei, : “Pyramid deep dehazing”: an unsupervised single image dehazing method using deep image prior. Opt. Laser Technol. 148, 107788 (2022)
|
| 12 |
A.A. Hendriksen, , D.M. Pelt, , K.J. Batenburg, : Noise2iInverse: self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320- 1335 (2020)
|
| 13 |
L. Chen, , P. Bentley, , K. Mori, , K. Misawa, , M. Fujiwara, , D. Rueckert, : Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)
|
| 14 |
F. Wang, , Y. Bian, , H. Wang, , M. Lyu, , G. Pedrini, , W. Osten, , G. Barbastathis, , G. Situ, : Phase imaging with an untrained neural network. Light Sci. Appl. 9 (1), 1- 7 (2020)
|
| 15 |
B. Li, , Y. Gou, , J.Z. Liu, , H. Zhu, , J.T. Zhou, , X. Peng, : Zero-shot image dehazing. IEEE Trans. Image Process 29, 8457- 8466 (2020)
|
| 16 |
E.J. McCartney, : Optics of the atmosphere: scattering by molecules and particles. New York, John Wiley and Sons Inc 1976, 421 (1976)
|
| 17 |
S.G. Narasimhan, , S.K. Nayar, : Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25 (6), 713- 724 (2003)
|
| 18 |
K. He, , J. Sun, , X. Tang, : Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33 (12), 2341- 2353 (2011)
|
| 19 |
Z. Li, , J. Zheng, : Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process 24 (12), 5432- 5441 (2015)
|
| 20 |
S. Satrasupalli, , E. Daniel, , S.R. Guntur, : Single image haze removal based on transmission map estimation using encoder-decoder based deep learning architecture. Optik 248, 168197 (2021)
|
| 21 |
R.T. Tan, : Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1- 8 (2008). IEEE
|
| 22 |
D. Berman, , T. Treibitz, , S. Avidan, : Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674- 1682 (2016)
|
| 23 |
O. Ronneberger, , P. Fischer, , T. Brox, : U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234- 241 (2015). Springer
|
| 24 |
K. He, , J. Sun, , X. Tang, : Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell 35 (6), 1397- 1409 (2012)
|
| 25 |
G. Chen, , L. Li, , W. Jin, , S. Qiu, , H. Guo, : Weighted sparse representation and gradient domain guided filter pyramid image fusion based on low-light-level dual-channel camera. IEEE Photonics J. 11 (5), 1- 15 (2019)
|
| 26 |
W. Wang, , X. Yuan, , X. Wu, , Y. Liu, : Fast image dehazing method based on linear transformation. IEEE Trans. Multimedia 19 (6), 1142- 1155 (2017)
|
| 27 |
G. Gao, , H. Huang, , C. Fu, , Z. Li, , R. He, : Information bottleneck disentanglement for identity swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3404- 3413 (2021)
|
| 28 |
B. Li, , W. Ren, , D. Fu, , D. Tao, , D. Feng, , W. Zeng, , Z. Wang, : Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process 28 (1), 492- 505 (2019)
|
| 29 |
C. Ancuti, , C.O. Ancuti, , R. Timofte, , C. De Vleeschouwer, : I-haze: a dehazing benchmark with real hazy and haze-free indoor images. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 620- 631 (2018). Springer
|
| 30 |
C.O. Ancuti, , C. Ancuti, , R. Timofte, , C. De Vleeschouwer, : O-haze: a dehazing benchmark with real hazy and haze-free out-door images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754- 762 (2018)
|
| 31 |
A. Mittal, , R. Soundararajan, , A.C. Bovik, : Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20 (3), 209- 212 (2012)
|
| 32 |
Z. Li, , H. Shu, , C. Zheng, : Multi-scale single image dehazing using laplacian and gaussian pyramids. IEEE Trans. Image Process 30, 9270- 9279 (2021)
|
| 33 |
M. Ju, , C. Ding, , W. Ren, , Y. Yang, , D. Zhang, , Y.J. Guo, : Ide: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process 30, 2180- 2192 (2021)
|
| 34 |
J. Shin, , H. Park, , J. Paik, : Region-based dehazing via dual-supervised triple-convolutional network. IEEE Trans. Multimedia 24, 245- 260 (2021)
|
| 35 |
S. Zhao, , L. Zhang, , Y. Shen, , Y. Zhou, : Refinednet: a weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process 30, 3391- 3404 (2021)
|
| 36 |
J. Li, , Y. Li, , L. Zhuo, , L. Kuang, , T. Yu, : Usid-net: Unsupervised single image dehazing network via disentangled representations. IEEE Trans. Multimedia (2022)
|
| 37 |
D.P. Kingma, , J. Ba, : Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412. 6980 (2014)
|
| 38 |
D. Ulyanov, , A. Vedaldi, , V. Lempitsky, : Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446- 9454 (2018)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|