Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (2) : 13    https://doi.org/10.1007/s12200-023-00068-1
RESEARCH ARTICLE
Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets
Baohao Xu1, Zhiyuan Jin1, Lie Shi1, Huanian Zhang2, Qi Liu3, Peng Qin3, Kai Jiang1, Jing Wang1, Wenjing Tang1(), Wei Xia1()
1. School of Physics and Technology, University of Jinan, Jinan 250022, China
2. School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China
3. Shandong Huaguang Optoelectronics Co., Ltd., Jinan 250101, China
 Download: PDF(2536 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm2 with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.

Keywords Fiber laser      Germanene      Mode-locked      Noise-like pluses     
Corresponding Author(s): Wenjing Tang,Wei Xia   
About author: * These authors contributed equally to this work.
Issue Date: 04 July 2023
 Cite this article:   
Baohao Xu,Zhiyuan Jin,Lie Shi, et al. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets[J]. Front. Optoelectron., 2023, 16(2): 13.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00068-1
https://academic.hep.com.cn/foe/EN/Y2023/V16/I2/13
1 U. Keller,: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
https://doi.org/10.1038/nature01938
2 K.C. Phillips,, H.H. Gandhi,, E. Mazur,, S.K. Sundaram,: Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7(4), 684–712 (2015)
https://doi.org/10.1364/AOP.7.000684
3 J. Kim,, Y. Song,: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)
https://doi.org/10.1364/AOP.8.000465
4 A. Banerjee,, D. Budker,, J. Eby,, H. Kim,, G. Perez,: Relaxion stars and their detection via atomic physics. Commun. Phys. 3(1), 1–6 (2020)
https://doi.org/10.1038/s42005-019-0260-3
5 F.W. Wise,, A. Chong,, W.H. Renninger,: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
https://doi.org/10.1002/lpor.200710041
6 F.X. Kurtner,, J.A. Au,, U. Keller,: Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998)
https://doi.org/10.1109/2944.686719
7 N. Xu,, H. Wang,, H. Zhang,, L. Guo,, X. Shang,, S. Jiang,, D. Li,: Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion. Nanophotonics 9(14), 4295–4306 (2020)
https://doi.org/10.1515/nanoph-2020-0267
8 L. Duan,, H. Wang,, J. Bai,, Y. Wang,, L. Wei,, Z. Chen,, J. Yu,, J. Wen,: 844-fs mode-locked fiber laser by carboxyl-functionalized graphene oxide. Opt. Eng. 56(11), 1 (2017)
https://doi.org/10.1117/1.OE.56.11.116104
9 Q. Bao,, H. Zhang,, Y. Wang,, Z. Ni,, Y. Yan,, Z. Shen,, K. Loh,, D. Tang,: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)
https://doi.org/10.1002/adfm.200901007
10 E. Hendry,, P.J. Hale,, J. Moger,, A.K. Savchenko,, S.A. Mikhailov,: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105(9), 097401 (2010)
https://doi.org/10.1103/PhysRevLett.105.097401
11 J.H. Im,, S.Y. Choi,, F. Rotermund,, D.I. Yeom,: All-fiber Erdoped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. Opt. Express 18(21), 22141–22146 (2010)
https://doi.org/10.1364/OE.18.022141
12 H. Xia,, H. Li,, C. Lan,, C. Li,, X. Zhang,, S. Zhang,, Y. Liu,: Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express 22(14), 17341–17348 (2014)
https://doi.org/10.1364/OE.22.017341
13 S. Sathiyan,, V. Velmurugan,, K. Senthilnathan,, P. Babu,, S. Sivabalan,: All-normal dispersion passively mode-locked Yb-doped fiber laser using MoS2-PVA saturable absorber. Laser Phys. 26(5), 055103 (2016)
https://doi.org/10.1088/1054-660X/26/5/055103
14 X. Shang,, N. Xu,, H. Zhang,, D. Li,: Nonlinear photoresponse of high damage threshold titanium disulfide nanocrystals for Q-switched pulse generation. Opt. Laser Technol. 151, 107988 (2022)
https://doi.org/10.1016/j.optlastec.2022.107988
15 L. Li,, L. Pang,, R. Wang,, X. Zhang,, Z. Hui,, D. Han,, F. Zhao,, W. Liu,: Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser. Laser Photonics Rev. 16(2), 2100255 (2022)
https://doi.org/10.1002/lpor.202100255
16 W.J. Liu,, M.L. Liu,, B. Liu,, R.G. Quhe,, M. Lei,, S.B. Fang,, H. Teng,, Z.Y. Wei,: Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express 27(5), 6689–6699 (2019)
https://doi.org/10.1364/OE.27.006689
17 M. Liu,, H. Wu,, X. Liu,, Y. Wang,, M. Lei,, W. Liu,, W. Guo,, Z. Wei,: Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron. Adv. 4(10), 200029 (2021)
https://doi.org/10.29026/oea.2021.200029
18 J. Sotor,, G. Sobon,, W. Macherzynski,, K. Abramski,: Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Phys. Lett. 11(5), 055102 (2014)
https://doi.org/10.1088/1612-2011/11/5/055102
19 H. Liu,, X.W. Zheng,, M. Liu,, N. Zhao,, A.P. Luo,, Z.C. Luo,, W.C. Xu,, H. Zhang,, C.J. Zhao,, S.C. Wen,: Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 22(6), 6868–6873 (2014)
https://doi.org/10.1364/OE.22.006868
20 C. Zhang,, H. Chu,, Z. Pan,, H. Pan,, S. Zhao,, D. Li,: Single crystalline BiOCl nanosheets with oxygen vacancies for ultrafast modelocking operation. Opt. Laser Technol. 159, 108945 (2023)
https://doi.org/10.1016/j.optlastec.2022.108945
21 W. Liu,, X. Xiong,, M. Liu,, X. Xing,, H. Chen,, H. Ye,, J. Han,, Z. Wei,: Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl. Phys. Lett. 120(5), 053108 (2022)
https://doi.org/10.1063/5.0077148
22 L. Wang,, X. Li,, C. Wang,, W. Luo,, T. Feng,, Y. Zhang,, H. Zhang,: Few-layer Mxene Ti3C2Tx (T=F, O, Or OH) for robust pulse generation in a compact Er-doped fiber laser. ChemNanoMat 5(9), 1233–1238 (2019)
https://doi.org/10.1002/cnma.201900309
23 Y.I. Jhon,, J. Koo,, B. Anasori,, M. Seo,, J.H. Lee,, Y. Gogotsi,, Y.M. Jhon,: Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 29(40), 1702496 (2017)
https://doi.org/10.1002/adma.201702496
24 N. Xu,, P. Ma,, S. Fu,, X. Shang,, S. Jiang,, S. Wang,, D. Li,, H. Zhang,: Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics 9(9), 2783–2795 (2020)
https://doi.org/10.1515/nanoph-2019-0545
25 Y. Song,, Z. Liang,, X. Jiang,, Y. Chen,, Z. Li,, L. Lu,, Y. Ge,, K. Wang,, J. Zheng,, S. Lu,, J. Ji,, H. Zhang,: Few-layer anti-monene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials 4(4), 045010 (2017)
https://doi.org/10.1088/2053-1583/aa87c1
26 L. Lu,, Z. Liang,, L. Wu,, Y. Chen,, Y. Song,, S. Dhanabalan,, J. Ponraj,, B. Dong,, Y. Xiang,, F. Xing,, D. Fan,, H. Zhang,: Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018)
https://doi.org/10.1002/lpor.201700221
27 W. Liu,, M. Liu,, J. Yin,, H. Chen,, W. Lu,, S. Fang,, H. Teng,, M. Lei,, P. Yan,, Z. Wei,: Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 10(17), 7971–7977 (2018)
https://doi.org/10.1039/C8NR00471D
28 W. Liu,, Y. Zhu,, M. Liu,, B. Wen,, S. Fang,, H. Teng,, M. Lei,, L. Liu,, Z. Wei,: Optical properties and applications for MoS2-Sb2Te2-MoS2 heterostructure materials. Photon. Res. 6(3), 220–227 (2018)
https://doi.org/10.1364/PRJ.6.000220
29 H. Zhang,, S. Sun,, X. Shang,, B. Guo,, X. Li,, X. Chen,, S. Jiang,, H. Zhang,, H. Ågren,, W. Zhang,, G. Wang,, C. Lu,, S. Fu,: Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics 11(7), 1261–1284 (2022)
https://doi.org/10.1515/nanoph-2022-0045
30 H. Mu,, Y. Liu,, S.R. Bongu,, X. Bao,, L. Li,, S. Xiao,, J. Zhuang,, C. Liu,, Y. Huang,, Y. Dong,, K. Helmerson,, J. Wang,, G. Liu,, Y. Du,, Q. Bao,: Germanium nanosheets with dirac characteristics as a saturable absorber for ultrafast pulse generation. Adv. Mater. 33(32), e2101042 (2021)
https://doi.org/10.1002/adma.202101042
31 W. Sun,, K. Jiang,, W. Tang,, J. Su,, K. Chen,, Q. Liu,, W. Xia,: Germanene nanosheets for mode-locked pulse generation in fiber lasers. Infrared Phys. Technol. 123, 104128 (2022)
https://doi.org/10.1016/j.infrared.2022.104128
32 C. Li,, J. Kang,, J. Xie,, Y. Wang,, L. Zhou,, H. Hu,, X. Li,, J. He,, B. Wang,, H. Zhang,: Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications. J. Mater. Chem. 8(46), 16318–16325 (2020)
https://doi.org/10.1039/D0TC03892J
33 D.Y. Tang,, L.M. Zhao,, B. Zhao,, A. Liu,: Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 72(4), 043816 (2005)
https://doi.org/10.1103/PhysRevA.72.043816
34 S. Chouli,, P. Grelu,: Rains of solitons in a fiber laser. Opt. Express 17(14), 11776–11781 (2009)
https://doi.org/10.1364/OE.17.011776
35 S. Chouli,, P. Grelu,: Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81(6), 063829 (2010)
https://doi.org/10.1103/PhysRevA.81.063829
36 D.Y. Tang,, W.S. Man,, H.Y. Tam,, P. Drummond,: Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64(3), 033814 (2001)
https://doi.org/10.1103/PhysRevA.64.033814
37 W.W. Hsiang,, C.H. Chang,, C.P. Cheng,, Y. Lai,: Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser. Opt. Lett. 34(13), 1967–1969 (2009)
https://doi.org/10.1364/OL.34.001967
38 X.W. Zheng,, Z.C. Luo,, H. Liu,, N. Zhao,, Q.Y. Ning,, M. Liu,, X. Feng,, X. Xing,, A. Luo,, W. Xu,: High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser. Appl. Phys. Express 7(4), 042701 (2014)
https://doi.org/10.7567/APEX.7.042701
39 B. Guo,, S. Li,, Y. Fan,, P. Wang,: Versatile soliton emission from a WS2 mode-locked fiber laser. Opt. Commun. 406, 66–71 (2018)
https://doi.org/10.1016/j.optcom.2017.05.042
40 Z. Dong,, J. Tian,, R. Li,, Y. Cui,, W. Zhang,, Y. Song,: Conventional soliton and noise-like pulse generated in an Er-doped fiber laser with carbon nanotube saturable absorbers. Appl. Sci. (Basel) 10(16), 5536 (2020)
https://doi.org/10.3390/app10165536
41 W. Zhao,, Q. Huang,, K. Li,, C. Gao,, X. Cheng,, Y. Yan,, Q. Guo,, X. Sun,, C. Mou,: High-energy noise-like pulses generated by an erbium-doped fiber laser incorporating a PbS quantum-dot polystyrene composite film. J. Phys. Photonics 3(2), 024015 (2021)
https://doi.org/10.1088/2515-7647/abedd1
42 J. Zhuang,, C. Liu,, Z. Zhou,, G. Casillas,, H. Feng,, X. Xu,, J. Wang,, W. Hao,, X. Wang,, S.X. Dou,, Z. Hu,, Y. Du,: Dirac signature in germanene on semiconducting substrate. Adv. Sci. (Weinh.) 5(7), 1800207 (2018)
https://doi.org/10.1002/advs.201800207
43 Y. Wang,, S. Fu,, J. Kong,, A. Komarov,, M. Klimczak,, R. Buczyński,, X. Tang,, M. Tang,, Y. Qin,, L. Zhao,: Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation. Photon. Res. 9(8), 1531–1539 (2021)
https://doi.org/10.1364/PRJ.427842
44 Z. Wang,, Z. Wang,, Y.G. Liu,, W. Zhao,, H. Zhang,, S. Wang,, G. Yang,, R. He,: Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt. Express 24(13), 14709–14716 (2016)
https://doi.org/10.1364/OE.24.014709
[1] Tao Wang, Bo Ren, Can Li, Kun Guo, Jinyong Leng, Pu Zhou. Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality[J]. Front. Optoelectron., 2023, 16(3): 30-.
[2] Yuting Ouyang, Jiayu Zhang, Wanggen Sun, Mengxiao Li, Tao Chen, Haikun Zhang, Wenjing Tang, Wei Xia. Picosecond dissipative soliton generation from an ytterbium-doped fiber laser based on a BP/SnSe2-PVA mixture saturable absorber[J]. Front. Optoelectron., 2023, 16(3): 19-.
[3] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[4] Rawan S. M. Soboh, Ahmed H. H. Al-Masoodi, Fuad N. A. Erman, Abtisam H. H. Al-Masoodi, Bilal Nizamani, Hamzah Arof, Retna Apsari, Sulaiman Wadi Harun. Mode-locked ytterbium-doped fiber laser with zinc phthalocyanine thin film saturable absorber[J]. Front. Optoelectron., 2022, 15(2): 28-.
[5] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[6] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
[7] Sudharsanan SRINIVASAN,Michael DAVENPORT,Martijn J. R. HECK,John HUTCHINSON,Erik NORBERG,Gregory FISH,John BOWERS. Low phase noise hybrid silicon mode-locked lasers[J]. Front. Optoelectron., 2014, 7(3): 265-276.
[8] Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
[9] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[10] Jiaqi ZHAO, Zhi WANG, Yange LIU, Bo LIU, . Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber[J]. Front. Optoelectron., 2010, 3(3): 283-288.
[11] Xi CHEN, Wei LI, Chao YANG, Ning YANG. High-power fiber laser combination technology[J]. Front Optoelec Chin, 2009, 2(3): 264-268.
[12] Shuang LIU, Junqiang SUN, Ping SHUM. Stable and high-performance multiwavelength erbium-doped fiber laser based on fiber delay interferometer[J]. Front Optoelec Chin, 2009, 2(2): 195-199.
[13] Bo WU, Yongzhi LIU, Qianshu ZHANG, Huimin YUE, Zhiyong DAI. High efficient and narrow linewidth fiber laser based on fiber grating Fabry-Perot cavity[J]. Front Optoelec Chin, 2008, 1(3-4): 215-218.
[14] LI Libo, LOU Qihong, ZHOU Jun, DONG Jingxing, WEI Yunrong, LI Jinyan. Influence of bending diameter on output capability of multimode fiber laser[J]. Front. Optoelectron., 2008, 1(1-2): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed