Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 18    https://doi.org/10.1007/s12200-023-00073-4
REVIEW ARTICLE
χ(2) nonlinear photonics in integrated microresonators
Pengfei Liu1, Hao Wen1, Linhao Ren1, Lei Shi1,2(), Xinliang Zhang1,2
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Optics Valley Laboratory, Wuhan 430074, China
 Download: PDF(1830 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.

Keywords Second-order nonlinearity      Integrated microresonators      Frequency conversion      Electro-optic effect     
Corresponding Author(s): Lei Shi   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 26 October 2023
 Cite this article:   
Pengfei Liu,Hao Wen,Linhao Ren, et al. χ(2) nonlinear photonics in integrated microresonators[J]. Front. Optoelectron., 2023, 16(3): 18.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00073-4
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/18
1 P.A. Franken,, A.E. Hill,, C.W. Peters,, G. Weinreich,: Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961)
https://doi.org/10.1103/PhysRevLett.7.118
2 Y.R. Shen,: Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989)
https://doi.org/10.1038/337519a0
3 D. Bouwmeester,, J.W. Pan,, K. Mattle,, M. Eibl,, H. Weinfurter,, A. Zeilinger,: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
https://doi.org/10.1038/37539
4 K.L. Vodopyanov,, M.M. Fejer,, X. Yu,, J.S. Harris,, Y.S. Lee,, W.C. Hurlbut,, V.G. Kozlov,, D. Bliss,, C. Lynch,: Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89(14), 141119 (2006)
https://doi.org/10.1063/1.2357551
5 J. He,, H. Chen,, J. Hu,, J. Zhou,, Y. Zhang,, A. Kovach,, C. Sideris,, M.C. Harrison,, Y. Zhao,, A.M. Armani,: Nonlinear nano-photonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9(12), 3781–3804 (2020)
https://doi.org/10.1515/nanoph-2020-0231
6 T.P. McKenna,, H.S. Stokowski,, V. Ansari,, J. Mishra,, M. Jankowski,, C.J. Sarabalis,, J.F. Herrmann,, C. Langrock,, M.M. Fejer,, A.H. Safavi-Naeini,: Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13(1), 4532 (2022)
https://doi.org/10.1038/s41467-022-31134-5
7 F. Bussières,, C. Clausen,, A. Tiranov,, B. Korzh,, V.B. Verma,, S.W. Nam,, F. Marsili,, A. Ferrier,, P. Goldner,, H. Herrmann,, C. Silberhorn,, W. Sohler,, M. Afzelius,, N. Gisin,: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8(10), 775–778 (2014)
https://doi.org/10.1038/nphoton.2014.215
8 S. Bogdanov,, M.Y. Shalaginov,, A. Boltasseva,, V.M. Shalaev,: Material platforms for integrated quantum photonics. Opt. Mater. Express 7(1), 111–132 (2017)
https://doi.org/10.1364/OME.7.000111
9 M. Bock,, P. Eich,, S. Kucera,, M. Kreis,, A. Lenhard,, C. Becher,, J. Eschner,: High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9(1), 1998 (2018)
https://doi.org/10.1038/s41467-018-04341-2
10 L. Tang,, J. Tang,, M. Chen,, F. Nori,, M. Xiao,, K. Xia,: Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128(8), 083604 (2022)
https://doi.org/10.1103/PhysRevLett.128.083604
11 C. Wang,, M. Zhang,, X. Chen,, M. Bertrand,, A. Shams-Ansari,, S. Chandrasekhar,, P. Winzer,, M. Lončar,: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)
https://doi.org/10.1038/s41586-018-0551-y
12 K.J. Vahala,: Optical microcavities. Nature 424(6950), 839–846 (2003)
https://doi.org/10.1038/nature01939
13 J. Ward,, O. Benson,: WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5(4), 553–570 (2011)
https://doi.org/10.1002/lpor.201000025
14 G. Lin,, A. Coillet,, Y.K. Chembo,: Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photonics 9(4), 828–890 (2017)
https://doi.org/10.1364/AOP.9.000828
15 Q. Song,: Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China Phys. Mech. Astron. 62(7), 74231 (2019)
https://doi.org/10.1007/s11433-018-9349-2
16 J. Liu,, F. Bo,, L. Chang,, C.H. Dong,, X. Ou,, B. Regan,, X. Shen,, Q. Song,, B. Yao,, W. Zhang,, C.L. Zou,, Y.F. Xiao,: Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65(10), 104201 (2022)
https://doi.org/10.1007/s11433-022-1957-3
17 R. Soref,: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)
https://doi.org/10.1109/JSTQE.2006.883151
18 D.V. Strekalov,, C. Marquardt,, A.B. Matsko,, H.G.L. Schwefel,, G. Leuchs,: Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18(12), 123002 (2016)
https://doi.org/10.1088/2040-8978/18/12/123002
19 X. Zhang,, Q.T. Cao,, Z. Wang,, Y.X. Liu,, C.W. Qiu,, L. Yang,, Q. Gong,, Y.F. Xiao,: Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13(1), 21–24 (2019)
https://doi.org/10.1038/s41566-018-0297-y
20 D.N. Puzyrev,, D.V. Skryabin,: Ladder of Eckhaus instabilities and parametric conversion in χ(2) microresonators. Commun. Phys. 5(1), 138 (2022)
https://doi.org/10.1038/s42005-022-00907-1
21 S. Feng,, T. Lei,, H. Chen,, H. Cai,, X. Luo,, A.W. Poon,: Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6(2), 145–177 (2012)
https://doi.org/10.1002/lpor.201100020
22 D.J. Moss,, R. Morandotti,, A.L. Gaeta,, M. Lipson,: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2013)
https://doi.org/10.1038/nphoton.2013.183
23 D. Thomson,, A. Zilkie,, J.E. Bowers,, T. Komljenovic,, G.T. Reed,, L. Vivien,, D. Marris-Morini,, E. Cassan,, L. Virot,, J.M. Fédéli,, J.M. Hartmann,, J.H. Schmid,, D.X. Xu,, F. Boeuf,, P. O’Brien,, G.Z. Mashanovich,, M. Nedeljkovic,: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)
https://doi.org/10.1088/2040-8978/18/7/073003
24 A. Kovach,, D. Chen,, J. He,, H. Choi,, A.H. Dogan,, M. Ghasemkhani,, H. Taheri,, A.M. Armani,: Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics 12(1), 135–222 (2020)
https://doi.org/10.1364/AOP.376924
25 D.J. Blumenthal,, R. Heideman,, D. Geuzebroek,, A. Leinse,, C. Roeloffzen,: Silicon nitride in silicon photonics. Proc. IEEE 106(12), 2209–2231 (2018)
https://doi.org/10.1109/JPROC.2018.2861576
26 I. Taghavi,, M. Moridsadat,, A. Tofini,, S. Raza,, N.A.F. Jaeger,, L. Chrostowski,, B.J. Shastri,, S. Shekhar,: Polymer modulators in silicon photonics: review and projections. Nanophotonics 11(17), 3855–3871 (2022)
https://doi.org/10.1515/nanoph-2022-0141
27 X. Lu,, G. Moille,, A. Rao,, D.A. Westly,, K. Srinivasan,: Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15(2), 131–136 (2021)
https://doi.org/10.1038/s41566-020-00708-4
28 E. Nitiss,, J. Hu,, A. Stroganov,, C.S. Brès,: Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16(2), 134–141 (2022)
https://doi.org/10.1038/s41566-021-00925-5
29 A. Boes,, B. Corcoran,, L. Chang,, J. Bowers,, A. Mitchell,: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12(4), 1700256 (2018)
https://doi.org/10.1002/lpor.201700256
30 S. Wang,, L. Yang,, R. Cheng,, Y. Xu,, M. Shen,, R.L. Cone,, C.W. Thiel,, H.X. Tang,: Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116(15), 151103 (2020)
https://doi.org/10.1063/1.5142631
31 V. Milad Gholipour,, F. Sasan,: Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 4(3), 034001 (2022)
https://doi.org/10.1117/1.AP.4.3.034001
32 G. Chen,, N. Li,, J.D. Ng,, H.L. Lin,, Y. Zhou,, Y.H. Fu,, L.Y. Lee,, Y. Yu,, A.Q. Liu,, A. Danner,: Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4(3), 034003 (2022)
https://doi.org/10.1117/1.AP.4.3.034003
33 A. Yi,, C. Wang,, L. Zhou,, Y. Zhu,, S. Zhang,, T. You,, J. Zhang,, X. Ou,: Silicon carbide for integrated photonics. Appl. Phys. Rev. 9(3), 031302 (2022)
https://doi.org/10.1063/5.0079649
34 N. Li,, C.P. Ho,, S. Zhu,, Y.H. Fu,, Y. Zhu,, L.Y.T. Lee,: Aluminium nitride integrated photonics: a review. Nanophotonics 10(9), 2347–2387 (2021)
https://doi.org/10.1515/nanoph-2021-0130
35 X. Liu,, A.W. Bruch,, H.X. Tang,: Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Adv. Opt. Photonics 15(1), 236–317 (2023)
https://doi.org/10.1364/AOP.479017
36 Y. Zheng,, C. Sun,, B. Xiong,, L. Wang,, Z. Hao,, J. Wang,, Y. Han,, H. Li,, J. Yu,, Y. Luo,: Integrated gallium nitride nonlinear photonics. Laser Photonics Rev. 16(1), 2100071 (2022)
https://doi.org/10.1002/lpor.202100071
37 D.J. Wilson,, K. Schneider,, S. Hönl,, M. Anderson,, Y. Baumgartner,, L. Czornomaz,, T.J. Kippenberg,, P. Seidler,: Integrated gallium phosphide nonlinear photonics. Nat. Photonics 14(1), 57–62 (2020)
https://doi.org/10.1038/s41566-019-0537-9
38 E. Mobini,, D.H.G. Espinosa,, K. Vyas,, K. Dolgaleva,: AlGaAs nonlinear integrated photonics. Micromachines (Basel) 13(7), 991 (2022)
https://doi.org/10.3390/mi13070991
39 D. Zhu,, L.B. Shao,, M.J. Yu,, R. Cheng,, B. Desiatov,, C.J. Xin,, Y.W. Hu,, J. Holzgrafe,, S. Ghosh,, A. Shams-Ansari,, E. Puma,, N. Sinclair,, C. Reimer,, M. Zhang,, M. Loncar,: Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13(2), 242–352 (2021)
https://doi.org/10.1364/AOP.411024
40 R. Gao,, H. Zhang,, F. Bo,, W. Fang,, Z. Hao,, N. Yao,, J. Lin,, J. Guan,, L. Deng,, M. Wang,, L. Qiao,, Y. Cheng,: Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys. 23(12), 123027 (2021)
https://doi.org/10.1088/1367-2630/ac3d52
41 P. Gräupner,, J.C. Pommier,, A. Cachard,, J.L. Coutaz,: Electro-optical effect in aluminum nitride waveguides. J. Appl. Phys. 71(9), 4136–4139 (1992)
https://doi.org/10.1063/1.350844
42 W.H.P. Pernice,, C. Xiong,, C. Schuck,, H.X. Tang,: Second harmonic generation in phase matched aluminum nitride wave-guides and micro-ring resonators. Appl. Phys. Lett. 100(22), 223501 (2012)
https://doi.org/10.1063/1.4722941
43 K. Liu,, S. Yao,, Y. Ding,, Z. Wang,, Y. Guo,, J. Yan,, J. Wang,, C. Yang,, C. Bao,: Fundamental linewidth of an AlN microcavity Raman laser. Opt. Lett. 47(17), 4295–4298 (2022)
https://doi.org/10.1364/OL.466195
44 K. Powell,, L. Li,, A. Shams-Ansari,, J. Wang,, D. Meng,, N. Sinclair,, J. Deng,, M. Lončar,, X. Yi,: Integrated silicon carbide electro-optic modulator. Nat. Commun. 13(1), 1851 (2022)
https://doi.org/10.1038/s41467-022-29448-5
45 S. Wang,, M. Zhan,, G. Wang,, H. Xuan,, W. Zhang,, C. Liu,, C. Xu,, Y. Liu,, Z. Wei,, X. Chen,: 4H-SiC: a new nonlinear mate-rial for midinfrared lasers. Laser Photonics Rev. 7(5), 831–838 (2013)
https://doi.org/10.1002/lpor.201300068
46 C. Wang,, Z. Fang,, A. Yi,, B. Yang,, Z. Wang,, L. Zhou,, C. Shen,, Y. Zhu,, Y. Zhou,, R. Bao,, Z. Li,, Y. Chen,, K. Huang,, J. Zhang,, Y. Cheng,, X. Ou,: High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10(1), 139 (2021)
https://doi.org/10.1038/s41377-021-00584-9
47 X.C. Long,, R.A. Myers,, S.R.J. Brueck,, R. Ramer,, K. Zheng,, S.D. Hersee,: GaN linear electro-optic effect. Appl. Phys. Lett. 67(10), 1349–1351 (1995)
https://doi.org/10.1063/1.115547
48 N.A. Sanford,, A.V. Davydov,, D.V. Tsvetkov,, A.V. Dmitriev,, S. Keller,, U.K. Mishra,, S.P. DenBaars,, S.S. Park,, J.Y. Han,, R.J. Molnar,: Measurement of second order susceptibilities of GaN and AlGaN. J. Appl. Phys. 97(5), 053512 (2005)
https://doi.org/10.1063/1.1852695
49 D.F. Nelson,, E.H. Turner,: Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide. J. Appl. Phys. 39(7), 3337–3343 (1968)
https://doi.org/10.1063/1.1656779
50 I. Shoji,, T. Kondo,, A. Kitamoto,, M. Shirane,, R. Ito,: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)
https://doi.org/10.1364/JOSAB.14.002268
51 C.A. Berseth,, C. Wuethrich,, F.K. Reinhart,: The electro-optic coefficients of GaAs: measurements at 1.32 and 1.52 μm and study of their dispersion between 0.9 and 10 μm. J. Appl. Phys. 71(6), 2821–2825 (1992)
https://doi.org/10.1063/1.351011
52 B. Guha,, F. Marsault,, F. Cadiz,, L. Morgenroth,, V. Ulin,, V. Berkovitz,, A. Lemaître,, C. Gomez,, A. Amo,, S. Combrié,, B. Gérard,, G. Leo,, I. Favero,: Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106. Optica 4(2), 218–221 (2017)
https://doi.org/10.1364/OPTICA.4.000218
53 R.W. Boyd,: Nonlinear Optics. Academic press, London (2020)
54 Y. Zhao,, J.K. Jang,, Y. Okawachi,, A.L. Gaeta,: Theory of χ(2)-microresonator-based frequency conversion. Opt. Lett. 46(21), 5393–5396 (2021)
https://doi.org/10.1364/OL.427684
55 B. Saleh,, M. Teich,: Fundamentals of Photonics. Wiley, Hoboken (2019)
56 M. Thomaschewski,, S.I. Bozhevolnyi,: Pockels modulation in integrated nanophotonics. Appl. Phys. Rev. 9(2), 021311 (2022)
https://doi.org/10.1063/5.0083083
57 X. Guo,, C.L. Zou,, H.X. Tang,: Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 3(10), 1126–1131 (2016)
https://doi.org/10.1364/OPTICA.3.001126
58 S. Fathpour,: Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron. 54(6), 1–16 (2018)
https://doi.org/10.1109/JQE.2018.2876903
59 J.U. Fürst,, D.V. Strekalov,, D. Elser,, M. Lassen,, U.L. Andersen,, C. Marquardt,, G. Leuchs,: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104(15), 153901 (2010)
https://doi.org/10.1103/PhysRevLett.104.153901
60 J. Lin,, Y. Xu,, J. Ni,, M. Wang,, Z. Fang,, L. Qiao,, W. Fang,, Y. Cheng,: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)
https://doi.org/10.1103/PhysRevApplied.6.014002
61 R. Luo,, H. Jiang,, S. Rogers,, H. Liang,, Y. He,, Q. Lin,: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)
https://doi.org/10.1364/OE.25.024531
62 G. Lin,, J.U. Fürst,, D.V. Strekalov,, N. Yu,: Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett. 103(18), 181107 (2013)
https://doi.org/10.1063/1.4827538
63 J. Lin,, N. Yao,, Z. Hao,, J. Zhang,, W. Mao,, M. Wang,, W. Chu,, R. Wu,, Z. Fang,, L. Qiao,, W. Fang,, F. Bo,, Y. Cheng,: Broadband quasi-phase-matched harmonic generation in an onchip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 122(17), 173903 (2019)
https://doi.org/10.1103/PhysRevLett.122.173903
64 C. Xiong,, W. Pernice,, K.K. Ryu,, C. Schuck,, K.Y. Fong,, T. Palacios,, H.X. Tang,: Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 19(11), 10462–10470 (2011)
https://doi.org/10.1364/OE.19.010462
65 J. Chen,, Y.M. Sua,, H. Fan,, Y. Huang,: Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1(1), 229–242 (2018)
https://doi.org/10.1364/OSAC.1.000229
66 R. Luo,, Y. He,, H. Liang,, M. Li,, J. Ling,, Q. Lin,: Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl. 11(3), 034026 (2019)
https://doi.org/10.1103/PhysRevApplied.11.034026
67 V.S. Ilchenko,, A.B. Matsko,, A.A. Savchenkov,, L. Maleki,: Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes. J. Opt. Soc. Am. B 20(6), 1304–1308 (2003)
https://doi.org/10.1364/JOSAB.20.001304
68 Y. Niu,, X. Yan,, J. Chen,, Y. Ma,, Y. Zhou,, H. Chen,, Y. Wu,, Z. Bai,: Research progress on periodically poled lithium niobate for nonlinear frequency conversion. Infrared Phys. Technol. 125(3), 104243 (2022)
https://doi.org/10.1016/j.infrared.2022.104243
69 A.D. Logan,, S. Shree,, S. Chakravarthi,, N. Yama,, C. Pederson,, K. Hestroffer,, F. Hatami,, K.C. Fu,: Triply-resonant sum frequency conversion with gallium phosphide ring resonators. Opt. Express 31(2), 1516–1531 (2023)
https://doi.org/10.1364/OE.473211
70 J. Lu,, J.B. Surya,, X. Liu,, A.W. Bruch,, Z. Gong,, Y. Xu,, H.X. Tang,: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)
https://doi.org/10.1364/OPTICA.6.001455
71 J. Zhao,, M. Rüsing,, M. Roeper,, L.M. Eng,, S. Mookherjea,: Poling thin-film X-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys. 127(19), 193104 (2020)
https://doi.org/10.1063/1.5143266
72 J.T. Nagy,, R.M. Reano,: Reducing leakage current during periodic poling of ion-sliced X-cut MgO doped lithium niobate thin films. Opt. Mater. Express 9(7), 3146–3155 (2019)
https://doi.org/10.1364/OME.9.003146
73 M. Rüsing,, J. Zhao,, S. Mookherjea,: Second harmonic microscopy of poled X-cut thin film lithium niobate: understanding the contrast mechanism. J. Appl. Phys. 126(11), 114105 (2019)
https://doi.org/10.1063/1.5113727
74 J. Chen,, Z. Ma,, Y.M. Sua,, Z. Li,, C. Tang,, Y. Huang,: Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6(9), 1244–1245 (2019)
https://doi.org/10.1364/OPTICA.6.001244
75 Z. Hao,, L. Zhang,, W. Mao,, A. Gao,, X. Gao,, F. Gao,, F. Bo,, G. Zhang,, J. Xu,: Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photon. Res. 8(3), 311–317 (2020)
https://doi.org/10.1364/PRJ.382535
76 J. Lu,, M. Li,, C. Zou,, A. Al Sayem,, H.X. Tang,: Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7(12), 1654–1659 (2020)
https://doi.org/10.1364/OPTICA.403931
77 V.Y. Shur,, A.R. Akhmatkhanov,, I.S. Baturin,: Micro- and nanodomain engineering in lithium niobate. Appl. Phys. Rev. 2(4), 040604 (2015)
https://doi.org/10.1063/1.4928591
78 A. Boes,, L. Chang,, C. Langrock,, M. Yu,, M. Zhang,, Q. Lin,, M. Lončar,, M. Fejer,, J. Bowers,, A. Mitchell,: Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379(6627), eabj4396 (2023)
https://doi.org/10.1126/science.abj4396
79 Y.F. Qi,, Y. Li,: Integrated lithium niobate photonics. Nanophotonics 9(6), 1287–1320 (2020)
https://doi.org/10.1515/nanoph-2020-0013
80 Q. Luo,, Z. Hao,, C. Yang,, R. Zhang,, D. Zheng,, S. Liu,, H. Liu,, F. Bo,, Y. Kong,, G. Zhang,, J. Xu,: Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron. 64(3), 234263 (2021)
https://doi.org/10.1007/s11433-020-1637-8
81 Y. Liu,, X. Yan,, J. Wu,, B. Zhu,, Y. Chen,, X. Chen,: On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron. 64(3), 234262 (2021)
https://doi.org/10.1007/s11433-020-1625-9
82 Y. Jia,, J. Wu,, X. Sun,, X. Yan,, R. Xie,, L. Wang,, Y. Chen,, F. Chen,: Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev. 16(9), 2200059 (2022)
https://doi.org/10.1002/lpor.202200059
83 G. Poberaj,, H. Hu,, W. Sohler,, P. Günter,: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)
https://doi.org/10.1002/lpor.201100035
84 D. Sun,, Y. Zhang,, D. Wang,, W. Song,, X. Liu,, J. Pang,, D. Geng,, Y. Sang,, H. Liu,: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)
https://doi.org/10.1038/s41377-020-00434-0
85 Y. Kong,, F. Bo,, W. Wang,, D. Zheng,, H. Liu,, G. Zhang,, R. Rupp,, J. Xu,: Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater. 32(3), e1806452 (2020)
https://doi.org/10.1002/adma.201806452
86 M. Zhang,, C. Wang,, R. Cheng,, A. Shams-Ansari,, M. Loncar,: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)
https://doi.org/10.1364/OPTICA.4.001536
87 K. Luke,, P. Kharel,, C. Reimer,, L. He,, M. Loncar,, M. Zhang,: Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28(17), 24452–24458 (2020)
https://doi.org/10.1364/OE.401959
88 S. Liu,, Y. Zheng,, X. Chen,: Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett. 42(18), 3626–3629 (2017)
https://doi.org/10.1364/OL.42.003626
89 R. Wolf,, Y. Jia,, S. Bonaus,, C.S. Werner,, S.J. Herr,, I. Breunig,, K. Buse,, H. Zappe,: Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5(7), 872–875 (2018)
https://doi.org/10.1364/OPTICA.5.000872
90 M. Zhang,, C. Wang,, Y. Hu,, A. Shams-Ansari,, T. Ren,, S. Fan,, M. Lončar,: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)
https://doi.org/10.1038/s41566-018-0317-y
91 B. Desiatov,, A. Shams-Ansari,, M. Zhang,, C. Wang,, M. Lončar,: Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6(3), 380–384 (2019)
https://doi.org/10.1364/OPTICA.6.000380
92 Y. Hu,, M. Yu,, N. Sinclair,, D. Zhu,, R. Cheng,, C. Wang,, M. Lončar,: Mirror-induced reflection in the frequency domain. Nat. Commun. 13(1), 6293 (2022)
https://doi.org/10.1038/s41467-022-33529-w
93 R. Zhuang,, J. He,, Y. Qi,, Y. Li,: High-Q thin film lithium niobate microrings fabricated with wet etching. Adv. Mater. 35(3), e2208113 (2023)
https://doi.org/10.1002/adma.202208113
94 R. Wu,, J. Zhang,, N. Yao,, W. Fang,, L. Qiao,, Z. Chai,, J. Lin,, Y. Cheng,: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)
https://doi.org/10.1364/OL.43.004116
95 Z. Fang,, S. Haque,, J. Lin,, R. Wu,, J. Zhang,, M. Wang,, J. Zhou,, M. Rafa,, T. Lu,, Y. Cheng,: Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett. 44(5), 1214–1217 (2019)
https://doi.org/10.1364/OL.44.001214
96 R. Gao,, N. Yao,, J. Guan,, L. Deng,, J. Lin,, M. Wang,, L. Qiao,, W. Fang,, Y. Cheng,: Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett. 20(1), 011902 (2022)
https://doi.org/10.3788/COL202220.011902
97 X. Ye,, S. Liu,, Y. Chen,, Y. Zheng,, X. Chen,: Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett. 45(2), 523–526 (2020)
https://doi.org/10.1364/OL.383450
98 J. Lin,, Y. Xu,, Z. Fang,, M. Wang,, J. Song,, N. Wang,, L. Qiao,, W. Fang,, Y. Cheng,: Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep. 5(1), 8072 (2015)
https://doi.org/10.1038/srep08072
99 M. Wang,, Y. Xu,, Z. Fang,, Y. Liao,, P. Wang,, W. Chu,, L. Qiao,, J. Lin,, W. Fang,, Y. Cheng,: On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express 25(1), 124–129 (2017)
https://doi.org/10.1364/OE.25.000124
100 J. Lin,, F. Bo,, Y. Cheng,, J. Xu,: Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res. 8(12), 1910–1936 (2020)
https://doi.org/10.1364/PRJ.395305
101 Y. Zheng,, X. Chen,: Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X 6(1), 1889402 (2021)
https://doi.org/10.1080/23746149.2021.1889402
102 R.R. Xie,, G.Q. Li,, F. Chen,, G.L. Long,: Microresonators in lithium niobate thin films. Adv. Opt. Mater. 9(19), 2100539 (2021)
https://doi.org/10.1002/adom.202100539
103 Y. Jia,, L. Wang,, F. Chen,: Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev. 8(1), 011307 (2021)
https://doi.org/10.1063/5.0037771
104 J. Zhang,, B. Pan,, W. Liu,, D. Dai,, Y. Shi,: Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt. Express 30(12), 20839–20846 (2022)
https://doi.org/10.1364/OE.459315
105 M. Zhang,, C. Wang,, P. Kharel,, D. Zhu,, M. Lončar,: Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8(5), 652–667 (2021)
https://doi.org/10.1364/OPTICA.415762
106 G. Sinatkas,, T. Christopoulos,, O. Tsilipakos,, E.E. Kriezis,: Electro-optic modulation in integrated photonics. J. Appl. Phys. 130(1), 010901 (2021)
https://doi.org/10.1063/5.0048712
107 M. Xu,, X. Cai,: Advances in integrated ultra-wideband electrooptic modulators. Opt. Express 30(5), 7253–7274 (2022)
https://doi.org/10.1364/OE.449022
108 C. Wang,, I. Gonin,, A. Grassellino,, S. Kazakov,, A. Romanenko,, V.P. Yakovlev,, S. Zorzetti,: High-efficiency microwave-optical quantum transduction based on a cavity electro-optic super-conducting system with long coherence time. npj Quantum Inf. 8(1), 149 (2022)
https://doi.org/10.1038/s41534-022-00664-7
109 M. Yu,, D. Barton Iii,, R. Cheng,, C. Reimer,, P. Kharel,, L. He,, L. Shao,, D. Zhu,, Y. Hu,, H.R. Grant,, L. Johansson,, Y. Okawachi,, A.L. Gaeta,, M. Zhang,, M. Lončar,: Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612(7939), 252–258 (2022)
https://doi.org/10.1038/s41586-022-05345-1
110 H. Huang,, A. Balčytis,, A. Dubey,, A. Boes,, T.G. Nguyen,, G. Ren,, M. Tan,, A. Mitchell,: Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron. Sci. 2(3), 220022 (2023)
https://doi.org/10.29026/oes.2023.220022
111 M. Shah,, I. Briggs,, P.K. Chen,, S. Hou,, L. Fan,: Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate. Opt. Lett. 48(8), 1978–1981 (2023)
https://doi.org/10.1364/OL.482635
112 L. Wang,, C. Wang,, J. Wang,, F. Bo,, M. Zhang,, Q. Gong,, M. Lončar,, Y.F. Xiao,: High-Q chaotic lithium niobate microdisk cavity. Opt. Lett. 43(12), 2917–2920 (2018)
https://doi.org/10.1364/OL.43.002917
113 Z. Ma,, J.Y. Chen,, Z. Li,, C. Tang,, Y.M. Sua,, H. Fan,, Y.P. Huang,: Ultrabright quantum photon sources on chip. Phys. Rev. Lett. 125(26), 263602 (2020)
https://doi.org/10.1103/PhysRevLett.125.263602
114 M. Li,, Y.L. Zhang,, H.X. Tang,, C.H. Dong,, G.C. Guo,, C.L. Zou,: Photon–photon quantum phase gate in a photonic molecule with χ(2) nonlinearity. Phys. Rev. Appl. 13(4), 044013 (2020)
115 J. Chen,, Z. Li,, Z. Ma,, C. Tang,, H. Fan,, Y.M. Sua,, Y. Huang,: Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16(6), 064004 (2021)
https://doi.org/10.1103/PhysRevApplied.16.064004
116 S. Saravi,, T. Pertsch,, F. Setzpfandt,: Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater. 9(22), 2100789 (2021)
https://doi.org/10.1002/adom.202100789
117 A. Shams-Ansari,, M. Yu,, Z. Chen,, C. Reimer,, M. Zhang,, N. Picqué,, M. Lončar,: Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun. Phys. 5(1), 88 (2022)
https://doi.org/10.1038/s42005-022-00865-8
118 C. Wang,, M.J. Burek,, Z. Lin,, H.A. Atikian,, V. Venkataraman,, I.C. Huang,, P. Stark,, M. Lončar,: Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 22(25), 30924–30933 (2014)
https://doi.org/10.1364/OE.22.030924
119 J. Lin,, Y. Xu,, Z. Fang,, M. Wang,, N. Wang,, L. Qiao,, W. Fang,, Y. Cheng,: Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron. 58(11), 114209 (2015)
https://doi.org/10.1007/s11433-015-5728-x
120 Z. Hao,, L. Zhang,, A. Gao,, W. Mao,, X. Lyu,, X. Gao,, F. Bo,, F. Gao,, G. Zhang,, J. Xu,: Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron. 61(11), 114211 (2018)
https://doi.org/10.1007/s11433-018-9241-5
121 L. Zhang,, Z. Hao,, Q. Luo,, A. Gao,, R. Zhang,, C. Yang,, F. Gao,, F. Bo,, G. Zhang,, J. Xu,: Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett. 45(12), 3353–3356 (2020)
https://doi.org/10.1364/OL.393244
122 C.C. Kores,, C. Canalias,, F. Laurell,: Quasi-phase matching waveguides on lithium niobate and KTP for nonlinear frequency conversion: a comparison. APL Photonics 6(9), 091102 (2021)
https://doi.org/10.1063/5.0060096
123 J.Y. Chen,, C. Tang,, M. Jin,, Z. Li,, Z. Ma,, H. Fan,, S. Kumar,, Y.M. Sua,, Y.P. Huang,: Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev. 15(11), 2100091 (2021)
https://doi.org/10.1002/lpor.202100091
124 H. Jiang,, H. Liang,, R. Luo,, X. Chen,, Y. Chen,, Q. Lin,: Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett. 113(2), 021104 (2018)
https://doi.org/10.1063/1.5039948
125 M. Li,, H. Liang,, R. Luo,, Y. He,, Q. Lin,: High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev. 13(5), 1800228 (2019)
https://doi.org/10.1002/lpor.201800228
126 S. Yuan,, Y. Wu,, Z. Dang,, C. Zeng,, X. Qi,, G. Guo,, X. Ren,, J. Xia,: Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127(15), 153901 (2021)
https://doi.org/10.1103/PhysRevLett.127.153901
127 Y. Li,, Z. Huang,, W. Qiu,, J. Dong,, H. Guan,, H. Lu,: Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett. 19(6), 060012 (2021). (Invited)
https://doi.org/10.3788/COL202119.060012
128 Z. Hao,, J. Wang,, S. Ma,, W. Mao,, F. Bo,, F. Gao,, G. Zhang,, J. Xu,: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photon. Res. 5(6), 623–628 (2017)
https://doi.org/10.1364/PRJ.5.000623
129 Z. Hao,, L. Zhang,, J. Wang,, F. Bo,, F. Gao,, G. Zhang,, J. Xu,: Sum-frequency generation of a laser and its background in an onchip lithium-niobate microdisk. Chin. Opt. Lett. 20(11), 111902 (2022)
https://doi.org/10.3788/COL202220.111902
130 J.U. Fürst,, D.V. Strekalov,, D. Elser,, A. Aiello,, U.L. Andersen,, C.H. Marquardt,, G. Leuchs,: Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105(26), 263904 (2010)
https://doi.org/10.1103/PhysRevLett.105.263904
131 T. Beckmann,, H. Linnenbank,, H. Steigerwald,, B. Sturman,, D. Haertle,, K. Buse,, I. Breunig,: Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106(14), 143903 (2011)
https://doi.org/10.1103/PhysRevLett.106.143903
132 J. Yang,, C. Wang,: Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express 29(11), 16477–16486 (2021)
https://doi.org/10.1364/OE.419965
133 J. Lu,, A. Al Sayem,, Z. Gong,, J.B. Surya,, C. Zou,, H.X. Tang,: Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8(4), 539–544 (2021)
https://doi.org/10.1364/OPTICA.418984
134 B. Xu,, L. Chen,, J. Lin,, L. Feng,, R. Niu,, Z. Zhou,, R. Gao,, C. Dong,, G. Guo,, Q. Gong,, Y. Cheng,, Y. Xiao,, X. Ren,: Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65(9), 294262 (2022)
https://doi.org/10.1007/s11433-022-1926-0
135 R. Ikuta,, M. Asano,, R. Tani,, T. Yamamoto,, N. Imoto,: Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express 26(12), 15551–15558 (2018)
https://doi.org/10.1364/OE.26.015551
136 S. Liu,, Y. Zheng,, Z. Fang,, X. Ye,, Y. Cheng,, X. Chen,: Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett. 44(6), 1456–1459 (2019)
https://doi.org/10.1364/OL.44.001456
137 J. Szabados,, D.N. Puzyrev,, Y. Minet,, L. Reis,, K. Buse,, A. Villois,, D.V. Skryabin,, I. Breunig,: Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett. 124(20), 203902 (2020)
https://doi.org/10.1103/PhysRevLett.124.203902
138 R. Wolf,, I. Breunig,, H. Zappe,, K. Buse,: Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25(24), 29927–29933 (2017)
https://doi.org/10.1364/OE.25.029927
139 C. Javerzac-Galy,, K. Plekhanov,, N.R. Bernier,, L.D. Toth,, A.K. Feofanov,, T.J. Kippenberg,: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94(5), 053815 (2016)
https://doi.org/10.1103/PhysRevA.94.053815
140 J. Holzgrafe,, N. Sinclair,, D. Zhu,, A. Shams-Ansari,, M. Colangelo,, Y. Hu,, M. Zhang,, K.K. Berggren,, M. Lončar,: Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7(12), 1714–1720 (2020)
https://doi.org/10.1364/OPTICA.397513
141 M. Bahadori,, Y. Yang,, A.E. Hassanien,, L.L. Goddard,, S. Gong,: Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 28(20), 29644–29661 (2020)
https://doi.org/10.1364/OE.400413
142 Y. Hu,, M. Yu,, D. Zhu,, N. Sinclair,, A. Shams-Ansari,, L. Shao,, J. Holzgrafe,, E. Puma,, M. Zhang,, M. Lončar,: On-chip electrooptic frequency shifters and beam splitters. Nature 599(7886), 587–593 (2021)
https://doi.org/10.1038/s41586-021-03999-x
143 Y. Xu,, A.A. Sayem,, L. Fan,, C.L. Zou,, S. Wang,, R. Cheng,, W. Fu,, L. Yang,, M. Xu,, H.X. Tang,: Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12(1), 4453 (2021)
https://doi.org/10.1038/s41467-021-24809-y
144 V. Snigirev,, A. Riedhauser,, G. Lihachev,, M. Churaev,, J. Riemensberger,, R.N. Wang,, A. Siddharth,, G. Huang,, C. Möhl,, Y. Popoff,, U. Drechsler,, D. Caimi,, S. Hönl,, J. Liu,, P. Seidler,, T.J. Kippenberg,: Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615(7952), 411–417 (2023)
https://doi.org/10.1038/s41586-023-05724-2
145 A. Guarino,, G. Poberaj,, D. Rezzonico,, R. Degl’Innocenti,, P. Günter,: Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 1(7), 407–410 (2007)
https://doi.org/10.1038/nphoton.2007.93
146 C. Wang,, M. Zhang,, M. Yu,, R. Zhu,, H. Hu,, M. Loncar,: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)
https://doi.org/10.1038/s41467-019-08969-6
147 K. Xia,, F. Sardi,, C. Sauerzapf,, T. Kornher,, H.W. Becker,, Z. Kis,, L. Kovacs,, D. Dertli,, J. Foglszinger,, R. Kolesov,, J. Wrachtrup,: Tunable microcavities coupled to rare-earth quantum emitters. Optica 9(4), 445–450 (2022)
https://doi.org/10.1364/OPTICA.453527
148 J. Lin,, S. Farajollahi,, Z. Fang,, N. Yao,, R. Gao,, J. Guan,, L. Deng,, T. Lu,, M. Wang,, H. Zhang,, W. Fang,, L. Qiao,, Y. Cheng,: Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics 4(3), 036001 (2022)
https://doi.org/10.1117/1.AP.4.3.036001
149 Y.S. Lee,, G.D. Kim,, W.J. Kim,, S.S. Lee,, W.G. Lee,, W.H. Steier,: Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett. 36(7), 1119–1121 (2011)
https://doi.org/10.1364/OL.36.001119
150 L. Chen,, Q. Xu,, M.G. Wood,, R.M. Reano,: Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2), 112–118 (2014)
https://doi.org/10.1364/OPTICA.1.000112
151 C. Wang,, M. Zhang,, B. Stern,, M. Lipson,, M. Lončar,: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)
https://doi.org/10.1364/OE.26.001547
152 M. Mahmoud,, L. Cai,, C. Bottenfield,, G. Piazza,: Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photonics J. 10(1), 1–10 (2018)
https://doi.org/10.1109/JPHOT.2018.2797244
153 M. Li,, J. Ling,, Y. He,, U.A. Javid,, S. Xue,, Q. Lin,: Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11(1), 4123 (2020)
https://doi.org/10.1038/s41467-020-17950-7
154 B. Pan,, H. Cao,, Y. Huang,, Z. Wang,, K. Chen,, H. Li,, Z. Yu,, D. Dai,: Compact electro-optic modulator on lithium niobate. Photon. Res. 10(3), 697–702 (2022)
https://doi.org/10.1364/PRJ.449172
155 J. Wang,, F. Bo,, S. Wan,, W. Li,, F. Gao,, J. Li,, G. Zhang,, J. Xu,: High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23(18), 23072–23078 (2015)
https://doi.org/10.1364/OE.23.023072
156 Z. Fang,, H. Luo,, J. Lin,, M. Wang,, J. Zhang,, R. Wu,, J. Zhou,, W. Chu,, T. Lu,, Y. Cheng,: Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett. 44(24), 5953–5956 (2019)
https://doi.org/10.1364/OL.44.005953
157 T.J. Wang,, G.L. Peng,, M.Y. Chan,, C.H. Chen,: On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol. 38(7), 1851–1857 (2020)
https://doi.org/10.1109/JLT.2019.2959345
158 I. Krasnokutska,, J.J. Tambasco,, A. Peruzzo,: Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 9(1), 11086 (2019)
https://doi.org/10.1038/s41598-019-47231-3
159 H. Feng,, K. Zhang,, W. Sun,, Y. Ren,, Y. Zhang,, W. Zhang,, C. Wang,: Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photon. Res. 10(10), 2366–2373 (2022)
https://doi.org/10.1364/PRJ.464650
160 Y. Xue,, R. Gan,, K. Chen,, G. Chen,, Z. Ruan,, J. Zhang,, J. Liu,, D. Dai,, C. Guo,, L. Liu,: Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 9(10), 1131–1137 (2022)
https://doi.org/10.1364/OPTICA.470596
161 M. Bahadori,, L.L. Goddard,, S. Gong,: Fundamental electrooptic limitations of thin-film lithium niobate microring modulators. Opt. Express 28(9), 13731–13749 (2020)
https://doi.org/10.1364/OE.390179
162 B. Pan,, H. Liu,, H. Xu,, Y. Huang,, H. Li,, Z. Yu,, L. Liu,, Y. Shi,, D. Dai,: Ultra-compact lithium niobate microcavity electrooptic modulator beyond 110 GHz. Chip 1(4), 100029 (2022)
https://doi.org/10.1016/j.chip.2022.100029
163 M. Yu,, C. Wang,, M. Zhang,, M. Lončar,: Chip-based lithium-niobate frequency combs. IEEE Photonics Technol. Lett. 31(23), 1894–1897 (2019)
https://doi.org/10.1109/LPT.2019.2950567
164 A. Parriaux,, K. Hammani,, G. Millot,: Electro-optic frequency combs. Adv. Opt. Photonics 12(1), 223–287 (2020)
https://doi.org/10.1364/AOP.382052
165 H. Sun,, M. Khalil,, Z. Wang,, L.R. Chen,: Recent progress in integrated electro-optic frequency comb generation. J. Semicond. 42(4), 041301 (2021)
https://doi.org/10.1088/1674-4926/42/4/041301
166 A. Hermans,, K.V. Gasse,, B. Kuyken,: On-chip optical comb sources. APL Photonics 7(10), 100901 (2022)
https://doi.org/10.1063/5.0105164
167 Y. Sun,, J. Wu,, M. Tan,, X. Xu,, Y. Li,, R. Morandotti,, A. Mitchell,, D.J. Moss,: Applications of optical microcombs. Adv. Opt. Photonics 15(1), 86–175 (2023)
https://doi.org/10.1364/AOP.470264
168 P. Liu,, L. Ren,, H. Wen,, L. Shi,, X. Zhang,: Progress in integrated electro-optic frequency combs. Hongwai Yu Jiguang Gongcheng 51(5), 20220381 (2022). (Invited)
https://doi.org/10.3788/IRLA20220381
169 R. Zhuang,, K. Ni,, G. Wu,, T. Hao,, L. Lu,, Y. Li,, Q. Zhou,: Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev. 17(6), 2200353 (2023)
https://doi.org/10.1002/lpor.202200353
170 A. Rueda,, F. Sedlmeir,, M. Kumari,, G. Leuchs,, H.G.L. Schwefel,: Resonant electro-optic frequency comb. Nature 568(7752), 378–381 (2019)
https://doi.org/10.1038/s41586-019-1110-x
171 B. Buscaino,, M. Zhang,, M. Loncar,, J.M. Kahn,: Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Lightwave Technol. 38(6), 1400–1413 (2020)
https://doi.org/10.1109/JLT.2020.2973884
172 Y. Hu,, C. Reimer,, A. Shams-Ansari,, M. Zhang,, M. Loncar,: Realization of high-dimensional frequency crystals in electrooptic microcombs. Optica 7(9), 1189–1194 (2020)
https://doi.org/10.1364/OPTICA.395114
173 M. Xu,, M. He,, Y. Zhu,, L. Liu,, L. Chen,, S. Yu,, X. Cai,: Integrated thin film lithium niobate Fabry–Perot modulator. Chin. Opt. Lett. 19(6), 060003 (2021)
https://doi.org/10.3788/COL202119.060003
174 M. Zhang,, B. Buscaino,, C. Wang,, A. Shams-Ansari,, C. Reimer,, R. Zhu,, J.M. Kahn,, M. Lončar,: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568(7752), 373–377 (2019)
https://doi.org/10.1038/s41586-019-1008-7
175 Y. Hu,, M. Yu,, B. Buscaino,, N. Sinclair,, D. Zhu,, R. Cheng,, A. Shams-Ansari,, L. Shao,, M. Zhang,, J.M. Kahn,, M. Lončar,: High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics 16(10), 679–685 (2022)
https://doi.org/10.1038/s41566-022-01059-y
176 Z. Gong,, M. Shen,, J. Lu,, J.B. Surya,, H.X. Tang,: Monolithic Kerr and electro-optic hybrid microcombs. Optica 9(9), 1060–1065 (2022)
https://doi.org/10.1364/OPTICA.462055
177 C. Xiong,, W.H.P. Pernice,, X. Sun,, C. Schuck,, Y. Fong,, H.X. Tang,: Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14(9), 095014 (2012)
https://doi.org/10.1088/1367-2630/14/9/095014
178 H. Jung,, H.X. Tang,: Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics 5(2), 263–271 (2016)
https://doi.org/10.1515/nanoph-2016-0020
179 X. Liu,, Z. Gong,, A.W. Bruch,, J.B. Surya,, J. Lu,, H.X. Tang,: Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12(1), 5428 (2021)
https://doi.org/10.1038/s41467-021-25751-9
180 N. Watanabe,, T. Kimoto,, J. Suda,: The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C. J. Appl. Phys. 104(10), 106101 (2008)
https://doi.org/10.1063/1.3021148
181 A.L. Gaeta,, M. Lipson,, T.J. Kippenberg,: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
https://doi.org/10.1038/s41566-019-0358-x
182 W.H.P. Pernice,, C. Xiong,, H.X. Tang,: High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Opt. Express 20(11), 12261–12269 (2012)
https://doi.org/10.1364/OE.20.012261
183 J. Yan,, J. Wang,, P. Cong,, L. Sun,, N. Liu,, Z. Liu,, C. Zhao,, J. Li,: Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi C 8(2), 461–463 (2011)
https://doi.org/10.1002/pssc.201000458
184 R. Fan,, Z. Hao,, Z. Chen,, J. Hu,, L. Wang,: High quality AlN with a thin interlayer grown on a sapphire substrate by plasma-assisted molecular beam epitaxy. Chin. Phys. Lett. 27(6), 068101 (2010)
https://doi.org/10.1088/0256-307X/27/6/068101
185 W.J. Shin,, P. Wang,, Y. Sun,, S. Paul,, J. Liu,, M. Kira,, M. Soltani,, Z. Mi,: Enhanced Pockels effect in AlN microring resonator modulators based on AlGaN/AlN multiple quantum wells. ACS Photonics 10(1), 34–42 (2023)
https://doi.org/10.1021/acsphotonics.2c00370
186 C. Xiong,, W.H.P. Pernice,, H.X. Tang,: Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12(7), 3562–3568 (2012)
https://doi.org/10.1021/nl3011885
187 S. Zhu,, G.Q. Lo,: Aluminum nitride electro-optic phase shifter for backend integration on silicon. Opt. Express 24(12), 12501–12506 (2016)
https://doi.org/10.1364/OE.24.012501
188 L. Fan,, C.L. Zou,, R. Cheng,, X. Guo,, X. Han,, Z. Gong,, S. Wang,, H.X. Tang,: Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4(8), eaar4994 (2018)
https://doi.org/10.1126/sciadv.aar4994
189 J.B. Surya,, X. Guo,, C.L. Zou,, H.X. Tang,: Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address a rubidium two-photon clock transition. Opt. Lett. 43(11), 2696–2699 (2018)
https://doi.org/10.1364/OL.43.002696
190 A.W. Bruch,, X. Liu,, X. Guo,, J.B. Surya,, Z. Gong,, L. Zhang,, J. Wang,, J. Yan,, H.X. Tang,: 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113(13), 131102 (2018)
https://doi.org/10.1063/1.5042506
191 X. Guo,, C.L. Zou,, H. Jung,, H.X. Tang,: On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117(12), 123902 (2016)
https://doi.org/10.1103/PhysRevLett.117.123902
192 X. Guo,, C.L. Zou,, C. Schuck,, H. Jung,, R. Cheng,, H.X. Tang,: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6(5), e16249 (2016)
https://doi.org/10.1038/lsa.2016.249
193 A.W. Bruch,, X. Liu,, J.B. Surya,, C.L. Zou,, H.X. Tang,: Onchip χ(2) microring optical parametric oscillator. Optica 6(10), 1361–1366 (2019)
https://doi.org/10.1364/OPTICA.6.001361
194 J.Q. Wang,, Y.H. Yang,, M. Li,, X.X. Hu,, J.B. Surya,, X.B. Xu,, C.H. Dong,, G.C. Guo,, H.X. Tang,, C.L. Zou,: Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126(13), 133601 (2021)
https://doi.org/10.1103/PhysRevLett.126.133601
195 J. Szabados,, B. Sturman,, I. Breunig,: Frequency comb generation threshold via second-harmonic excitation in χ(2) optical microresonators. APL Photonics 5(11), 116102 (2020)
https://doi.org/10.1063/5.0021424
196 D.N. Puzyrev,, V.V. Pankratov,, A. Villois,, D.V. Skryabin,: Bright-soliton frequency combs and dressed states in χ(2) microresonators. Phys. Rev. A 104(1), 013520 (2021)
https://doi.org/10.1103/PhysRevA.104.013520
197 G. Lin,, Q. Song,: Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photonics Rev. 16(1), 2100184 (2022)
https://doi.org/10.1002/lpor.202100184
198 H. Jung,, X. Guo,, N. Zhu,, S.B. Papp,, S.A. Diddams,, H.X. Tang,: Phase-dependent interference between frequency doubled comb lines in a χ(2) phase-matched aluminum nitride microring. Opt. Lett. 41(16), 3747–3750 (2016)
https://doi.org/10.1364/OL.41.003747
199 H. Jung,, R. Stoll,, X. Guo,, D. Fischer,, H.X. Tang,: Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1(6), 396–399 (2014)
https://doi.org/10.1364/OPTICA.1.000396
200 X. Liu,, C. Sun,, B. Xiong,, L. Wang,, J. Wang,, Y. Han,, Z. Hao,, H. Li,, Y. Luo,, J. Yan,, T. Wei,, Y. Zhang,, J. Wang,: Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl. Phys. Lett. 113(17), 171106 (2018)
https://doi.org/10.1063/1.5046324
201 X. Guo,, C.L. Zou,, H. Jung,, Z. Gong,, A. Bruch,, L. Jiang,, H.X. Tang,: Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10(1), 014012 (2018)
https://doi.org/10.1103/PhysRevApplied.10.014012
202 Z. Gong,, A.W. Bruch,, F. Yang,, M. Li,, J. Lu,, J.B. Surya,, C.L. Zou,, H.X. Tang,: Quadratic strong coupling in AlN Kerr cavity solitons. Opt. Lett. 47(4), 746–749 (2022)
https://doi.org/10.1364/OL.447987
203 A.W. Bruch,, X. Liu,, Z. Gong,, J.B. Surya,, M. Li,, C.L. Zou,, H.X. Tang,: Pockels soliton microcomb. Nat. Photonics 15(1), 21–27 (2021)
https://doi.org/10.1038/s41566-020-00704-8
204 X. Guo,, C.L. Zou,, L. Jiang,, H.X. Tang,: All-optical control of linear and nonlinear energy transfer via the zeno effect. Phys. Rev. Lett. 120(20), 203902 (2018)
https://doi.org/10.1103/PhysRevLett.120.203902
205 C. Cui,, L. Zhang,, L. Fan,: In situ control of effective Kerr non-linearity with Pockels integrated photonics. Nat. Phys. 18(5), 497–501 (2022)
https://doi.org/10.1038/s41567-022-01542-x
206 J.Q. Wang,, Y.H. Yang,, M. Li,, H. Zhou,, X.B. Xu,, J.Z. Zhang,, C.H. Dong,, G.C. Guo,, C.L. Zou,: Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation. Nat. Commun. 13(1), 6223 (2022)
https://doi.org/10.1038/s41467-022-33914-5
207 I.J. Wu,, G.Y. Guo,: Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 78(3), 035447 (2008)
https://doi.org/10.1103/PhysRevB.78.035447
208 F.F. Yan,, A.L. Yi,, J.F. Wang,, Q. Li,, P. Yu,, J.X. Zhang,, A. Gali,, Y. Wang,, J.S. Xu,, X. Ou,, C.F. Li,, G.C. Guo,: Room-temperature coherent control of implanted defect spins in silicon carbide. npj Quantum Inf. 6(1), 38 (2020)
https://doi.org/10.1038/s41534-020-0270-8
209 D.V. Skryabin,, V.V. Pankratov,, A. Villois,, D.N. Puzyrev,: Photon–photon polaritons in χ(2) microresonators. Phys. Rev. Res. 3(1), L012017 (2021)
https://doi.org/10.1103/PhysRevResearch.3.L012017
210 C. Babin,, R. Stöhr,, N. Morioka,, T. Linkewitz,, T. Steidl,, R. Wörnle,, D. Liu,, E. Hesselmeier,, V. Vorobyov,, A. Denisenko,, M. Hentschel,, C. Gobert,, P. Berwian,, G.V. Astakhov,, W. Knolle,, S. Majety,, P. Saha,, M. Radulaski,, N.T. Son,, J. Ul-Hassan,, F. Kaiser,, J. Wrachtrup,: Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21(1), 67–73 (2022)
https://doi.org/10.1038/s41563-021-01148-3
211 S. Castelletto,, A. Peruzzo,, C. Bonato,, B.C. Johnson,, M. Radulaski,, H. Ou,, F. Kaiser,, J. Wrachtrup,: Silicon carbide photonics bridging quantum technology. ACS Photonics 9(5), 1434–1457 (2022)
https://doi.org/10.1021/acsphotonics.1c01775
212 T. Fan,, H. Moradinejad,, X. Wu,, A.A. Eftekhar,, A. Adibi,: High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express 26(20), 25814–25826 (2018)
https://doi.org/10.1364/OE.26.025814
213 Y. Zheng,, M. Pu,, A. Yi,, B. Chang,, T. You,, K. Huang,, A.N. Kamel,, M.R. Henriksen,, A.A. Jørgensen,, X. Ou,, H. Ou,: High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27(9), 13053–13060 (2019)
https://doi.org/10.1364/OE.27.013053
214 X. Wu,, T. Fan,, A.A. Eftekhar,, A.H. Hosseinnia,, A. Adibi,: High-Q ultrasensitive integrated photonic sensors based on slot-ring resonator on a 3C-SiC-on-insulator platform. Opt. Lett. 46(17), 4316–4319 (2021)
https://doi.org/10.1364/OL.434689
215 T. Fan,, X. Wu,, A.A. Eftekhar,, M. Bosi,, H. Moradinejad,, E.V. Woods,, A. Adibi,: High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform. Opt. Lett. 45(1), 153–156 (2020)
https://doi.org/10.1364/OL.45.000153
216 C. Wang,, J. Li,, A. Yi,, Z. Fang,, L. Zhou,, Z. Wang,, R. Niu,, Y. Chen,, J. Zhang,, Y. Cheng,, J. Liu,, C.H. Dong,, X. Ou,: Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl. 11(1), 341 (2022)
https://doi.org/10.1038/s41377-022-01042-w
217 X. Tang,, K.G. Irvine,, D. Zhang,, M.G. Spencer,: Linear electro-optic effect in cubic silicon carbide. Appl. Phys. Lett. 59(16), 1938–1939 (1991)
https://doi.org/10.1063/1.106165
218 X. Wu,, T. Fan,, A.A. Eftekhar,, A. Adibi,: High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt. Lett. 44(20), 4941–4944 (2019)
https://doi.org/10.1364/OL.44.004941
219 R. Wang,, J. Li,, L. Cai,, Q. Li,: Investigation of the electrooptic effect in high-Q 4H-SiC microresonators. Opt. Lett. 48(6), 1482–1485 (2023)
https://doi.org/10.1364/OL.482844
220 T. Fan,, X. Wu,, S.R.M. Vangapandu,, A.H. Hosseinnia,, A.A. Eftekhar,, A. Adibi,: Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform. Opt. Lett. 46(9), 2135–2138 (2021)
https://doi.org/10.1364/OL.422560
221 S. Yamada,, B.S. Song,, S. Jeon,, J. Upham,, Y. Tanaka,, T. Asano,, S. Noda,: Second-harmonic generation in a siliconcarbide-based photonic crystal nanocavity. Opt. Lett. 39(7), 1768–1771 (2014)
https://doi.org/10.1364/OL.39.001768
222 B.S. Song,, T. Asano,, S. Jeon,, H. Kim,, C. Chen,, D.D. Kang,, S. Noda,: Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6(8), 991–995 (2019)
https://doi.org/10.1364/OPTICA.6.000991
223 H. Kim,, S. Noda,, B.S. Song,, T. Asano,: Determination of nonlinear optical efficiencies of ultrahigh-Q photonic crystal nanocavities with structural imperfections. ACS Photonics 8(10), 2839–2845 (2021)
https://doi.org/10.1021/acsphotonics.1c00737
224 D.M. Lukin,, C. Dory,, M.A. Guidry,, K.Y. Yang,, S.D. Mishra,, R. Trivedi,, M. Radulaski,, S. Sun,, D. Vercruysse,, G.H. Ahn,, J. Vučković,: 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14(5), 330–334 (2020)
https://doi.org/10.1038/s41566-019-0556-6
225 D. Li,, K. Jiang,, X. Sun,, C. Guo,: AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 10(1), 43–110 (2018)
https://doi.org/10.1364/AOP.10.000043
226 L. Zhao,, C. Liu,, K. Wang,: Progress of GaN-based optoelectronic devices integrated with optical resonances. Small 18(14), e2106757 (2022)
https://doi.org/10.1002/smll.202106757
227 G. Zhu,, F. Qin,, X. Li,, Y. Sun,, F. Gao,, M. Tian,, B. Ji,, Y. Wang,: Research progress of gallium nitride microdisk cavity laser. Front. Mater. 9, 845885 (2022)
https://doi.org/10.3389/fmats.2022.845885
228 A.W. Bruch,, K. Xiong,, H. Jung,, X. Guo,, C. Zhang,, J. Han,, H.X. Tang,: Electrochemically sliced low loss AlGaN optical microresonators. Appl. Phys. Lett. 110(2), 021111 (2017)
https://doi.org/10.1063/1.4973521
229 U. Dharanipathy,, N. VicoTriviño,, C. Yan,, Z. Diao,, J.F. Carlin,, N. Grandjean,, R. Houdré,: Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Opt. Lett. 37(22), 4588–4590 (2012)
https://doi.org/10.1364/OL.37.004588
230 A. Stolz,, E. Cho,, E. Dogheche,, Y. Androussi,, D. Troadec,, D. Pavlidis,, D. Decoster,: Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 98(16), 161903 (2011)
https://doi.org/10.1063/1.3582055
231 O. Westreich,, M. Katz,, Y. Paltiel,, O. Ternyak,, N. Sicron,: Low propagation loss in GaN/AlGaN-based ridge waveguides. Phys. Status Solidi A Appl. Mater. Sci. 212(5), 1043–1048 (2015)
https://doi.org/10.1002/pssa.201431663
232 A.W. Bruch,, C. Xiong,, B. Leung,, M. Poot,, J. Han,, H.X. Tang,: Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Appl. Phys. Lett. 107(14), 141113 (2015)
https://doi.org/10.1063/1.4933093
233 E. Stassen,, M. Pu,, E. Semenova,, E. Zavarin,, W. Lundin,, K. Yvind,: High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Opt. Lett. 44(5), 1064–1067 (2019)
https://doi.org/10.1364/OL.44.001064
234 M.S. Mohamed,, A. Simbula,, J.F. Carlin,, M. Minkov,, D. Gerace,, V. Savona,, N. Grandjean,, M. Galli,, R. Houdré,: Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics 2(3), 031301 (2017)
https://doi.org/10.1063/1.4974311
235 K. Vyas,, D.H.G. Espinosa,, D. Hutama,, S.K. Jain,, R. Mahjoub,, E. Mobini,, K.M. Awan,, J. Lundeen,, K. Dolgaleva,: Group III–V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 7(1), 2097020 (2022)
https://doi.org/10.1080/23746149.2022.2097020
236 M. Mitchell,, A.C. Hryciw,, P.E. Barclay,: Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett. 104(14), 141104 (2014)
https://doi.org/10.1063/1.4870999
237 K. Schneider,, P. Welter,, Y. Baumgartner,, H. Hahn,, L. Czornomaz,, P. Seidler,: Gallium phosphide-on-silicon dioxide photonic devices. J. Lightwave Technol. 36(14), 2994–3002 (2018)
https://doi.org/10.1109/JLT.2018.2829221
238 M. Billet,, L. Reis,, Y. Léger,, C. Cornet,, F. Raineri,, I. Sagnes,, K. Pantzas,, G. Beaudoin,, G. Roelkens,, F. Leo,, B. Kuyken,: Gallium phosphide-on-insulator integrated photonic structures fabricated using micro-transfer printing. Opt. Mater. Express 12(9), 3731–3737 (2022)
https://doi.org/10.1364/OME.461146
239 S. Hönl,, Y. Popoff,, D. Caimi,, A. Beccari,, T.J. Kippenberg,, P. Seidler,: Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun. 13(1), 2065 (2022)
https://doi.org/10.1038/s41467-022-28670-5
240 K. Rivoire,, Z. Lin,, F. Hatami,, W.T. Masselink,, J. Vucković,: Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express 17(25), 22609–22615 (2009)
https://doi.org/10.1364/OE.17.022609
241 K. Rivoire,, Z. Lin,, F. Hatami,, J. Vučković,: Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities. Appl. Phys. Lett. 97(4), 043103 (2010)
https://doi.org/10.1063/1.3469936
242 D.P. Lake,, M. Mitchell,, H. Jayakumar,, L.F. dos Santos,, D. Curic,, P.E. Barclay,: Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108(3), 031109 (2016)
https://doi.org/10.1063/1.4940242
243 A.D. Logan,, M. Gould,, E.R. Schmidgall,, K. Hestroffer,, Z. Lin,, W. Jin,, A. Majumdar,, F. Hatami,, A.W. Rodriguez,, K.C. Fu,: 400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators. Opt. Express 26(26), 33687–33699 (2018)
https://doi.org/10.1364/OE.26.033687
244 C.P. Dietrich,, A. Fiore,, M.G. Thompson,, M. Kamp,, S. Höfling,: GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10(6), 870–894 (2016)
https://doi.org/10.1002/lpor.201500321
245 W. Xie,, C. Xiang,, L. Chang,, W. Jin,, J. Peters,, J.E. Bowers,: Silicon-integrated nonlinear III–V photonics. Photon. Res. 10(2), 535–541 (2022)
https://doi.org/10.1364/PRJ.446898
246 M. Pu,, L. Ottaviano,, E. Semenova,, K. Yvind,: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)
https://doi.org/10.1364/OPTICA.3.000823
247 Y. Zheng,, M. Pu,, H.K. Sahoo,, E. Semenova,, K. Yvind,: High-quality-factor AlGaAs-on-sapphire microring resonators. J. Lightwave Technol. 37(3), 868–874 (2019)
https://doi.org/10.1109/JLT.2018.2882305
248 W. Xie,, L. Chang,, H. Shu,, J.C. Norman,, J.D. Peters,, X. Wang,, J.E. Bowers,: Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 28(22), 32894–32906 (2020)
https://doi.org/10.1364/OE.405343
249 T.J. Steiner,, J.E. Castro,, L. Chang,, Q. Dang,, W. Xie,, J. Norman,, J.E. Bowers,, G. Moody,: Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum 2(1), 010337 (2021)
https://doi.org/10.1103/PRXQuantum.2.010337
250 C. Kim,, C. Ye,, Y. Zheng,, E. Semenova,, K. Yvind,, M. Pu,: Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J. Sel. Top. Quantum Electron. 29(1), 1–13 (2022)
https://doi.org/10.1109/JSTQE.2022.3212047
251 H. Shu,, L. Chang,, Y. Tao,, B. Shen,, W. Xie,, M. Jin,, A. Netherton,, Z. Tao,, X. Zhang,, R. Chen,, B. Bai,, J. Qin,, S. Yu,, X. Wang,, J.E. Bowers,: Microcomb-driven silicon photonic systems. Nature 605(7910), 457–463 (2022)
https://doi.org/10.1038/s41586-022-04579-3
252 B. Bai,, Q. Yang,, H. Shu,, L. Chang,, F. Yang,, B. Shen,, Z. Tao,, J. Wang,, S. Xu,, W. Xie,, W. Zou,, W. Hu,, J.E. Bowers,, X. Wang,: Microcomb-based integrated photonic processing unit. Nat. Commun. 14(1), 66 (2023)
https://doi.org/10.1038/s41467-022-35506-9
253 Z. Yang,, J.E. Sipe,: Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators. Opt. Lett. 32(22), 3296–3298 (2007)
https://doi.org/10.1364/OL.32.003296
254 Z. Yang,, P. Chak,, A.D. Bristow,, H.M. van Driel,, R. Iyer,, J.S. Aitchison,, A.L. Smirl,, J.E. Sipe,: Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32(7), 826–828 (2007)
https://doi.org/10.1364/OL.32.000826
255 L. Li,, J. Sun,, T. Chen,: Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators. IEEE Photonics Technol. Lett. 23(8), 465–467 (2011)
https://doi.org/10.1109/LPT.2011.2109059
256 M. Gandomkar,, V. Ahmadi,: Thermo-optical switching enhanced with second harmonic generation in microring resonators. Opt. Lett. 36(19), 3825–3827 (2011)
https://doi.org/10.1364/OL.36.003825
257 S. Mariani,, A. Andronico,, O. Mauguin,, A. Lemaître,, I. Favero,, S. Ducci,, G. Leo,: AlGaAs microdisk cavities for second-harmonic generation. Opt. Lett. 38(19), 3965–3968 (2013)
https://doi.org/10.1364/OL.38.003965
258 S. Mariani,, A. Andronico,, A. Lemaître,, I. Favero,, S. Ducci,, G. Leo,: Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt. Lett. 39(10), 3062–3065 (2014)
https://doi.org/10.1364/OL.39.003062
259 E. Stassen,, M. Galili,, L.K. Oxenløwe,, K. Yvind,: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photonics 4(10), 100804 (2019)
https://doi.org/10.1063/1.5115232
260 P.S. Kuo,, J. Bravo-Abad,, G.S. Solomon,: Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 5(1), 3109 (2014)
https://doi.org/10.1038/ncomms4109
261 K. Rivoire,, S. Buckley,, J. Vučković,: Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion. Opt. Express 19(22), 22198–22207 (2011)
https://doi.org/10.1364/OE.19.022198
262 I. Roland,, A. Borne,, M. Ravaro,, R. De Oliveira,, S. Suffit,, P. Filloux,, A. Lemaître,, I. Favero,, G. Leo,: Frequency doubling and parametric fluorescence in a four-port aluminum gallium arsenide photonic chip. Opt. Lett. 45(10), 2878–2881 (2020)
https://doi.org/10.1364/OL.392417
263 L. Chang,, A. Boes,, P. Pintus,, J.D. Peters,, M.J. Kennedy,, X. Guo,, N. Volet,, S. Yu,, S.B. Papp,, J.E. Bowers,: Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4(3), 036103 (2019)
https://doi.org/10.1063/1.5065533
264 J. Chiles,, N. Nader,, E.J. Stanton,, D. Herman,, G. Moody,, J. Zhu,, J. Connor Skehan,, B. Guha,, A. Kowligy,, J.T. Gopinath,, K. Srinivasan,, S.A. Diddams,, I. Coddington,, N.R. Newbury,, J.M. Shainline,, S.W. Nam,, R.P. Mirin,: Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica 6(9), 1246–1254 (2019)
https://doi.org/10.1364/OPTICA.6.001246
265 L. Chang,, W. Xie,, H. Shu,, Q.F. Yang,, B. Shen,, A. Boes,, J.D. Peters,, W. Jin,, C. Xiang,, S. Liu,, G. Moille,, S.P. Yu,, X. Wang,, K. Srinivasan,, S.B. Papp,, K. Vahala,, J.E. Bowers,: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11(1), 1331 (2020)
https://doi.org/10.1038/s41467-020-15005-5
266 L. Chang,, A. Boes,, P. Pintus,, W. Xie,, J.D. Peters,, M.J. Kennedy,, W. Jin,, X.W. Guo,, S.P. Yu,, S.B. Papp,, J.E. Bowers,: Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 44(16), 4075–4078 (2019)
https://doi.org/10.1364/OL.44.004075
267 M. Parisi,, N. Morais,, I. Ricciardi,, S. Mosca,, T. Hansson,, S. Wabnitz,, G. Leo,, M.D. Rosa,: AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs. J. Opt. Soc. Am. B 34(9), 1842–1847 (2017)
https://doi.org/10.1364/JOSAB.34.001842
268 C. Monat,, Y. Su,: Hybrid photonics beyond silicon. APL Photonics 5(2), 020402 (2020)
https://doi.org/10.1063/5.0002005
269 P. Kaur,, A. Boes,, G. Ren,, T.G. Nguyen,, G. Roelkens,, A. Mitchell,: Hybrid and heterogeneous photonic integration. APL Photonics 6(6), 061102 (2021)
https://doi.org/10.1063/5.0052700
270 X. Liu,, X. Yan,, Y. Liu,, H. Li,, Y. Chen,, X. Chen,: Tunable single-mode laser on thin film lithium niobate. Opt. Lett. 46(21), 5505–5508 (2021)
https://doi.org/10.1364/OL.441167
271 C. Op de Beeck,, F.M. Mayor,, S. Cuyvers,, S. Poelman,, J.F. Herrmann,, O. Atalar,, T.P. McKenna,, B. Haq,, W. Jiang,, J.D. Witmer,, G. Roelkens,, A.H. Safavi-Naeini,, R. Van Laer,, B. Kuyken,: III/V-on-lithium niobate amplifiers and lasers. Optica 8(10), 1288–1289 (2021)
https://doi.org/10.1364/OPTICA.438620
272 M. Li,, L. Chang,, L. Wu,, J. Staffa,, J. Ling,, U.A. Javid,, S. Xue,, Y. He,, R. Lopez-Rios,, T.J. Morin,, H. Wang,, B. Shen,, S. Zeng,, L. Zhu,, K.J. Vahala,, J.E. Bowers,, Q. Lin,: Integrated Pockels laser. Nat. Commun. 13(1), 5344 (2022)
https://doi.org/10.1038/s41467-022-33101-6
273 A. Shams-Ansari,, D. Renaud,, R. Cheng,, L. Shao,, L. He,, D. Zhu,, M. Yu,, H.R. Grant,, L. Johansson,, M. Zhang,, M. Lončar,: Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9(4), 408–411 (2022)
https://doi.org/10.1364/OPTICA.448617
274 T. Komljenovic,, M. Davenport,, J. Hulme,, A.Y. Liu,, C.T. Santis,, A. Spott,, S. Srinivasan,, E.J. Stanton,, C. Zhang,, J.E. Bowers,: Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34(1), 20–35 (2016)
https://doi.org/10.1109/JLT.2015.2465382
275 T. Komljenovic,, D. Huang,, P. Pintus,, M.A. Tran,, M.L. Davenport,, J.E. Bowers,: Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 106(12), 2246–2257 (2018)
https://doi.org/10.1109/JPROC.2018.2864668
276 A.W. Elshaari,, W. Pernice,, K. Srinivasan,, O. Benson,, V. Zwiller,: Hybrid integrated quantum photonic circuits. Nat. Photonics 14(5), 285–298 (2020)
https://doi.org/10.1038/s41566-020-0609-x
277 S. Krastanov,, M. Heuck,, J.H. Shapiro,, P. Narang,, D.R. Englund,, K. Jacobs,: Room-temperature photonic logical qubits via second-order nonlinearities. Nat. Commun. 12(1), 191 (2021)
https://doi.org/10.1038/s41467-020-20417-4
278 C. Wang,, Z. Li,, M.H. Kim,, X. Xiong,, X.F. Ren,, G.C. Guo,, N. Yu,, M. Lončar,: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 2098 (2017)
https://doi.org/10.1038/s41467-017-02189-6
279 A. Ciattoni,, A. Marini,, C. Rizza,, C. Conti,: Phase-matching-free parametric oscillators based on two-dimensional semiconductors. Light Sci. Appl. 7(1), 5 (2018)
https://doi.org/10.1038/s41377-018-0011-3
[1] Zhenzhu Xu, Li Mei, Yuhua Chong, Xudong Gao, Shoubao Han, Chengkun Yang, Lin Li. A broadband integrated microwave photonic mixer based on balanced photodetection[J]. Front. Optoelectron., 2023, 16(2): 11-.
[2] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[3] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed