Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 23    https://doi.org/10.1007/s12200-023-00076-1
REVIEW ARTICLE
Energy-efficient integrated silicon optical phased array
Huaqing Qiu1,2(), Yong Liu1(), Xiansong Meng1(), Xiaowei Guan1,3,4(), Yunhong Ding1(), Hao Hu1()
1. DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
2. Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, Leuven 3001, Belgium
3. Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing 314000, China
4. Intelligent Optics and Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
 Download: PDF(5828 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optical phased array (OPA) is a promising non-mechanical technique for beam steering in solid-state light detection and ranging systems. The performance of the OPA largely depends on the phase shifter, which affects power consumption, insertion loss, modulation speed, and footprint. However, for a thermo-optic phase shifter, achieving good performance in all aspects is challenging due to trade-offs among these aspects. In this work, we propose and demonstrate two types of energy-efficient optical phase shifters that overcome these trade-offs and achieve a well-balanced performance in all aspects. Additionally, the proposed round-spiral phase shifter is robust in fabrication and fully compatible with deep ultraviolet (DUV) processes, making it an ideal building block for large-scale photonic integrated circuits (PICs). Using the high-performance phase shifter, we propose a periodic OPA with low power consumption, whose maximum electric power consumption within the field of view is only 0.33 W. Moreover, we designed Gaussian power distribution in both the azimuthal (ϕ) and polar (θ) directions and experimentally achieved a large sidelobe suppression ratio of 15.1 and 25 dB, respectively.

Keywords Optical phased array      Optical phase shifter      Silicon photonics      Integrated optics     
Corresponding Author(s): Hao Hu   
Issue Date: 26 October 2023
 Cite this article:   
Huaqing Qiu,Yong Liu,Xiansong Meng, et al. Energy-efficient integrated silicon optical phased array[J]. Front. Optoelectron., 2023, 16(3): 23.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00076-1
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/23
1 M. Chakraborty,, L.R. Khot,, S. Sankaran,, P.W. Jacoby,: Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 158, 284–293 (2019)
https://doi.org/10.1016/j.compag.2019.02.012
2 R. Collis,: Lidar. In: Advances in Geophysics vol. 13, pp. 113–139. Elsevier (1969)
https://doi.org/10.1016/S0065-2687(08)60509-9
3 C.A. Northend,: Lidar, a laser radar for meteorological studies. Naturwissenschaften 54, 77–80 (1967)
https://doi.org/10.1007/BF00608760
4 S.E. Reutebuch,, H.-E. Andersen,, R.J. McGaughey,: Light detection and ranging (lidar): an emerging tool for multiple resource inventory. J. Forest. 103(6), 286–292 (2005)
5 I. Kim,, R.J. Martins,, J. Jang,, T. Badloe,, S. Khadir,, H.-Y. Jung,, H. Kim,, J. Kim,, P. Genevet,, J. Rho,: Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16(5), 508–524 (2021)
https://doi.org/10.1038/s41565-021-00895-3
6 T. Raj,, F. Hanim Hashim,, A. Baseri Huddin,, M.F. Ibrahim,, A. Hussain,: A survey on lidar scanning mechanisms. Electronics 9(5), 741 (2020)
https://doi.org/10.3390/electronics9050741
7 J. Liu,, Q. Sun,, Z. Fan,, Y. Jia,: Tof lidar development in autonomous vehicle. In: 2018 IEEE 3rd Optoelectronics Global Conference (OGC), pp. 185–190. IEEE (2018)
https://doi.org/10.1109/OGC.2018.8529992
8 D. Wang,, C. Watkins,, H. Xie,: Mems mirrors for lidar: a review. Micromachines 11(5), 456 (2020)
https://doi.org/10.3390/mi11050456
9 P.F. McManamon,, P. Banks,, J. Beck,, D.G. Fried,, A.S. Huntington,, E.A. Watson,: Comparison of flash lidar detector options. Opt. Eng. 56(3), 031223–031223 (2017)
https://doi.org/10.1117/1.OE.56.3.031223
10 R. Stettner,: Compact 3d flash lidar video cameras and applications. In: Laser Radar Technology and Applications XV, vol. 7684, pp. 39–46. SPIE (2010)
https://doi.org/10.1117/12.851831
11 H.W. Yoo,, N. Druml,, D. Brunner,, C. Schwarzl,, T. Thurner,, M. Hennecke,, G. Schitter,: Mems-based lidar for autonomous driving. e & i Elektrotechnik und Informationstechnik (2018)
https://doi.org/10.1007/s00502-018-0635-2
12 Y. Takashima,, B. Hellman,, J. Rodriguez,, G. Chen,, B. Smith,, A. Gin,, A. Espinoza,, P. Winkler,, C. Perl,, C. Luo,, et al.: Mems-based imaging lidar. In: Optics and Photonics for Energy and the Environment, pp. 4–1. Optica Publishing Group (2018)
https://doi.org/10.1364/EE.2018.ET4A.1
13 L. Dong,, W. Zhu,, Y. Zhao,, X. Liu,, J. Zhang,, W. Liu,, X. Zhou,: A novel optical-mechanical scanning passive thz imaging system. In: 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2 IEEE (2012)
https://doi.org/10.1109/IRMMW-THz.2012.6380258
14 C.-P. Hsu,, B. Li,, B. Solano-Rivas,, A.R. Gohil,, P.H. Chan,, A.D. Moore,, V. Donzella,: A review and perspective on optical phased array for automotive lidar. IEEE J. Sel. Top. Quantum Electron. 27(1), 1–16 (2020)
https://doi.org/10.1109/JSTQE.2020.3022948
15 C.V. Poulton,, A. Yaacobi,, D.B. Cole,, M.J. Byrd,, M. Raval,, D. Vermeulen,, M.R. Watts,: Coherent solid-state lidar with silicon photonic optical phased arrays. Opt. Lett. 42(20), 4091–4094 (2017)
https://doi.org/10.1364/OL.42.004091
16 Y. Wang,, M. Wu,: An optical phased array for lidar. In: Journal of Physics: Conference Series, vol. 772, p. 012004. IOP Publishing (2016)
https://doi.org/10.1088/1742-6596/772/1/012004
17 M.J. Heck,: Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6(1), 93–107 (2017)
https://doi.org/10.1515/nanoph-2015-0152
18 C.V. Poulton,, M.J. Byrd,, E. Timurdogan,, P. Russo,, D. Vermeulen,, M.R. Watts,: Optical phased arrays for integrated beam steering. In: 2018 IEEE 15th International Conference on Group IV Photonics (GFP), pp. 1–2, IEEE (2018)
https://doi.org/10.1109/GROUP4.2018.8478729
19 H. Qiu,, J. Dong,, L. Liu,, X. Zhang,: Energy-efficient on-chip optical diode based on the optomechanical effect. Opt. Express 25(8), 8975–8985 (2017)
https://doi.org/10.1364/OE.25.008975
20 S.A. Miller,, Y.-C. Chang,, O.A.J. Gordillo,, et al.: Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 7(1), 3–6 (2020)
https://doi.org/10.1364/OPTICA.7.000003
21 G. Kang,, S.-H. Kim,, J.-B. You,, D.-S. Lee,, H. Yoon,, Y.-G. Ha,, J.-H. Kim,, D.-E. Yoo,, D.-W. Lee,, C.-H. Youn,, et al.: Silicon-based optical phased array using electro-optic p-i-n phase shifters. IEEE Photonics Technol. Lett. 31(21), 1685–1688 (2019)
https://doi.org/10.1109/LPT.2019.2939550
22 X. Tu,, T.-Y. Liow,, J. Song,, X. Luo,, Q. Fang,, M. Yu,, G.-Q. Lo,: 50-gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 21(10), 12776–12782 (2013)
https://doi.org/10.1364/OE.21.012776
23 Y. Wang,, G. Zhou,, X. Zhang,, K. Kwon,, P.-A. Blanche,, N. Triesault,, K.-S. Yu,, M.C. Wu,: 2d broadband beamsteering with large-scale mems optical phased array. Optica 6(5), 557–562 (2019)
https://doi.org/10.1364/OPTICA.6.000557
24 W. Jin,, R.G. Polcawich,, P.A. Morton,, J.E. Bowers,: Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26(3), 3174–3187 (2018)
https://doi.org/10.1364/OE.26.003174
25 S. Chung,, M. Nakai,, H. Hashemi,: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)
https://doi.org/10.1364/OE.27.013430
26 B. Szelag,, D. Fowler,, N.A. Tyler,, P. Grosse,, S. Malhouitre,, S. Garcia,, W. Rabaud,: Sin integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wave-length. Opt. Express 27(4), 5851–5858 (2019)
https://doi.org/10.1364/OE.27.005851
27 Q. Wang,, Q. Wang,, S. Wang,, S. Wang,, L. Jia,, Y. Cai,, W. Yue,, M. Yu,: Silicon nitride assisted 1x64 optical phased array based on a SOI platform. Opt. Express 29(7), 10509–10517 (2021)
https://doi.org/10.1364/OE.420921
28 K. Van Acoleyen,, H. Rogier,, R. Baets,, J.M. Kahn,, J.R. Barry,, K. Van Acoleyen,, W. Bogaerts,, J. Jágerská,, N. Le Thomas,, R. Houdré,, R. Baets,, P.F. McManamon,, T.A. Dorschner,, D.L. Corkum,, L.J. Friedman,, D.S. Hobbs,, M. Holz,, S. Liberman,, H.Q. Nguyen,, D.P. Resler,, R.C. Sharp,, E.A. Watson,, H. Joshi,, M.D. Higgins,, M.S. Leeson,: Two-dimensional optical phased array antenna on silicon-on-insulator. Optics Express 18(13), 13655–13660 (2010)
https://doi.org/10.1364/OE.18.013655
29 J. Sun,, E.S. Hosseini,, A. Yaacobi,, D.B. Cole,, D. Coolbaugh,, G. Leake,, M.R. Watts,: Two-dimensional apodized silicon photonic phased arrays. Opt. Lett. 39(2), 367–370 (2014)
https://doi.org/10.1364/OL.39.000367
30 C.T. Phare,, M.C. Shin,, S.A. Miller,, B. Stern,, M. Lipson,: Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view. CLEO: Science and Innovations, 3–2 (2018)
https://doi.org/10.1364/CLEO_SI.2018.SM3I.2
31 S. Sabouri,, K. Jamshidi,: Design considerations of silicon nitride optical phased array for visible light communications. IEEE J. Sel. Top. Quantum Electron. 24(6) (2018)
https://doi.org/10.1109/JSTQE.2018.2836991
32 C. Qin,, G. Liu,, K. Shang,, S.J.B. Yoo,, S. Feng,, X. Xiao,, Y. Zhang,: Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view. Opt. Express 25(17), 19655–19661 (2017)
https://doi.org/10.1364/OE.25.019655
33 D.N. Hutchison,, J. Sun,, J.K. Doylend,, R. Kumar,, J. Heck,, W. Kim,, C.T. Phare,, A. Feshali,, H. Rong,: High-resolution aliasing-free optical beam steering. Optica 3(8), 887–890 (2016)
https://doi.org/10.1364/OPTICA.3.000887
34 S. Chung,, H. Abediasl,, H. Hashemi,: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2017)
https://doi.org/10.1109/JSSC.2017.2757009
35 X. Zhang,, K. Kwon,, J. Henriksson,, J. Luo,, M.C. Wu,: A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603(7900), 253–258 (2022)
https://doi.org/10.1038/s41586-022-04415-8
36 W. Xu,, Y. Guo,, X. Li,, C. Liu,, L. Lu,, J. Chen,, L. Zhou,: Fully integrated solid-state lidar transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. J. Light. Technol. (2022)
https://doi.org/10.1364/OFC.2022.Th1E.4
37 W. Li,, J. Chen,, D. Liang,, D. Dai,, Y. Shi,: Silicon optical phased array with calibration-free phase shifters. Opt. Express 30(24), 44029–44038 (2022)
https://doi.org/10.1364/OE.475350
38 Y. Li,, B. Chen,, Q. Na,, Q. Xie,, M. Tao,, L. Zhang,, Z. Zhi,, Y. Li,, X. Liu,, X. Luo,, et al.: Wide-steering-angle high-resolution optical phased array. Photonics Res. 9(12), 2511–2518 (2021)
https://doi.org/10.1364/PRJ.437846
39 C.V. Poulton,, M.J. Byrd,, P. Russo,, B. Moss,, O. Shatrovoy,, M. Khandaker,, M.R. Watts,: Coherent lidar with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top Quantum Electron. 28(5: Lidars and Photonic Radars), 1–8 (2022)
https://doi.org/10.1109/JSTQE.2022.3187707
40 J. Midkiff,, K.M. Yoo,, J.-D. Shin,, H. Dalir,, M.H. Teimourpour,, R. Chen,: Optical phased array beam steering in the mid-infrared on an INP-based platform. Optica 7(11), 1544–1547 (2020)
https://doi.org/10.1364/OPTICA.400441
41 W. Xie,, T. Komljenovic,, J. Huang,, M. Tran,, M. Davenport,, A. Torres,, P. Pintus,, J. Bowers,: Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 27(3), 3642–3663 (2019)
https://doi.org/10.1364/OE.27.003642
42 C.V. Poulton,, M.J. Byrd,, P. Russo,, B. Moss,, O. Shatrovoy,, M. Khandaker,, M.R. Watts,: Coherent lidar with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top Quantum Electron. 28(5: Lidars and Photonic Radars), 1–8 (2022)
https://doi.org/10.1109/JSTQE.2022.3187707
43 J.P. Epping,, D. Marchenko,, A. Leinse,, R. Mateman,, M. Hoekman,, L. Wevers,, C.G. Roeloffzen,, M. Dekkers,, R.G. Heideman,: Ultra-low-power stress-based integrated photonic phase actuator. Proc. Eur. Conf. Integr. Opt (2018)
44 J. Sun,, E. Timurdogan,, A. Yaacobi,, Z. Su,, E.S. Hosseini,, D.B. Cole,, M.R. Watts,: Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2013)
https://doi.org/10.1109/JSTQE.2013.2293316
45 M.R. Watts,, J. Sun,, C. DeRose,, D.C. Trotter,, R.W. Young,, G.N. Nielson,: Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)
https://doi.org/10.1364/OL.38.000733
46 Y. Liu,, H. Hu,: Silicon optical phased array with a 180-degree field of view for 2D optical beam steering. Optica 9(8), 903–907 (2022)
https://doi.org/10.1364/OPTICA.458642
47 J. Komma,, C. Schwarz,, G. Hofmann,, D. Heinert,, R. Nawrodt,: Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101(4), 041905 (2012)
https://doi.org/10.1063/1.4738989
48 B.J. Frey,, D.B. Leviton,, T.J. Madison,: Temperature-dependent refractive index of silicon and germanium. In: Optomechanical Technologies for Astronomy, vol. 6273, pp. 790–799. SPIE (2006)
https://doi.org/10.1117/12.672850
49 R. Espinola,, M. Tsai,, J.T. Yardley,, R. Osgood,: Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003)
https://doi.org/10.1109/LPT.2003.818246
50 L. Gu,, W. Jiang,, X. Chen,, R.T. Chen,: Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach-Zehnder interferometers. IEEE Photonics Technol. Lett. 19(5), 342–344 (2007)
https://doi.org/10.1109/LPT.2007.891245
51 S. Yan,, X. Zhu,, L.H. Frandsen,, S. Xiao,, N.A. Mortensen,, J. Dong,, Y. Ding,: Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 8(1), 1–8 (2017)
https://doi.org/10.1038/ncomms14411
52 A. Densmore,, S. Janz,, R. Ma,, J.H. Schmid,, D.-X. Xu,, A. Delâge,, J. Lapointe,, M. Vachon,, P. Cheben,: Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 17(13), 10457–10465 (2009)
https://doi.org/10.1364/OE.17.010457
53 K. Murray,, Z. Lu,, H. Jayatilleka,, L. Chrostowski,: Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express 23(15), 19575–19585 (2015)
https://doi.org/10.1364/OE.23.019575
54 P. Sun,, R.M. Reano,: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)
https://doi.org/10.1364/OE.18.008406
55 Z. Lu,, K. Murray,, H. Jayatilleka,, L. Chrostowski,: Michelson interferometer thermo-optic switch on SOI with a 50-μw power consumption. IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015)
https://doi.org/10.1109/LPT.2015.2462341
56 H. Qiu,, Y. Liu,, C. Luan,, D. Kong,, X. Guan,, Y. Ding,, H. Hu,: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
https://doi.org/10.1364/OL.400230
57 H. Qiu,, Y. Liu,, C. Luan,, D. Kong,, X. Guan,, Y. Ding,, H. Hu,: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
https://doi.org/10.1364/OL.400230
58 W. Tong,, Y. Wei,, H. Zhou,, J. Dong,, X. Zhang,: The design of a low-loss, fast-response, metal thermo-optic phase shifter based on coupled-mode theory. In: Photonics, vol. 9, p. 447, MDPI (2022)
https://doi.org/10.3390/photonics9070447
59 M. Jacques,, A. Samani,, E. El-Fiky,, D. Patel,, Z. Xing,, D.V. Plant,: Optimization of thermo-optic phase-shifter design and miti-gation of thermal crosstalk on the SOI platform. Opt. Express 27(8), 10456–10471 (2019)
https://doi.org/10.1364/OE.27.010456
60 Y. Liu,, X. Meng,, H. Hu,: 1000-element silicon optical phased array for aliasing-free 2d optical beam steering. In: CLEO: Applications and Technology, pp. 6–3. Optica Publishing Group (2022).
https://doi.org/10.1364/CLEO_AT.2022.JTh6C.3
61 Y. Liu,, H. Hu,: Silicon optical phased array with 180-degree field of view for solid-state 2d beam steering. In: CLEO: Science and Innovations, pp. 1–3. Optica Publishing Group (2022).
https://doi.org/10.1364/CLEO_SI.2022.SS1D.3
62 H. Qiu,, Y. Liu,, X. Meng,, X. Guan,, Y. Ding,, H. Hu,: Bidirectional high sidelobe suppression silicon optical phased array. Photonics Res. 11(4), 659–668 (2023)
https://doi.org/10.1364/PRJ.479880
63 H. Qiu,, Y. Liu,, X. Meng,, X. Guan,, Y. Ding,, H. Hu,: Silicon optical phased array with high sidelobe suppression on both horizontal and vertical directions. In: CLEO: Science and Innovations, pp. 2–7. Optica Publishing Group (2022)
https://doi.org/10.1364/CLEO_SI.2022.STh2G.7
64 S. Chung,, H. Abediasl,, H. Hashemi,: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2017)
https://doi.org/10.1109/JSSC.2017.2757009
65 Q. Wang,, S. Wang,, M. Yu,, et al.: Silicon nitride assisted 1×64 optical phased array based on a SOI platform. Opt. Express 29(7), 10509–10517 (2021)
https://doi.org/10.1364/OE.420921
[1] Haiyan Luo, Lu Xu, Jie Yan, Qiansheng Wang, Wenwu Wang, Xi Xiao. High-resolution silicon photonic sensor based on a narrowband microwave photonic filter[J]. Front. Optoelectron., 2023, 16(1): 4-.
[2] Xudong Gao, Zhenzhu Xu, Yupeng Zhu, Chengkun Yang, Shoubao Han, Zongming Duan, Fan Zhang, Jianji Dong. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum[J]. Front. Optoelectron., 2023, 16(1): 6-.
[3] Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin. Co-packaged optics (CPO): status, challenges, and solutions[J]. Front. Optoelectron., 2023, 16(1): 1-.
[4] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[5] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[6] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[7] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[8] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[9] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[10] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[11] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[12] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[13] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[14] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[15] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed