Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 25    https://doi.org/10.1007/s12200-023-00078-z
RESEARCH ARTICLE
Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites
Cheng Wang1, Yaoguang Rong2, Ti Wang1()
1. Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1251 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

Keywords Perovskite      Inorganic cations      Carrier diffusion     
Corresponding Author(s): Ti Wang   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 26 October 2023
 Cite this article:   
Cheng Wang,Yaoguang Rong,Ti Wang. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites[J]. Front. Optoelectron., 2023, 16(3): 25.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00078-z
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/25
1 G. Xing,, N. Mathews,, S. Sun,, S.S. Lim,, Y.M. Lam,, M. Grätzel,, S. Mhaisalkar,, T.C. Sum,: Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)
https://doi.org/10.1126/science.1243167
2 D. Zhao,, Y. Yu,, C. Wang,, W. Liao,, N. Shrestha,, C.R. Grice,, A.J. Cimaroli,, L. Guan,, R.J. Ellingson,, K. Zhu,, X. Zhao,, R.G. Xiong,, Y. Yan,: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2(4), 17018 (2017)
https://doi.org/10.1038/nenergy.2017.18
3 D. Shi,, V. Adinolfi,, R. Comin,, M. Yuan,, E. Alarousu,, A. Buin,, Y. Chen,, S. Hoogland,, A. Rothenberger,, K. Katsiev,, Y. Losovyj,, X. Zhang,, P.A. Dowben,, O.F. Mohammed,, E.H. Sargent,, O.M. Bakr,: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)
https://doi.org/10.1126/science.aaa2725
4 A.A. Zhumekenov,, M.I. Saidaminov,, M.A. Haque,, E. Alarousu,, S.P. Sarmah,, B. Murali,, I. Dursun,, X.H. Miao,, A.L. Abdelhady,, T. Wu,, O.F. Mohammed,, O.M. Bakr,: Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1(1), 32–37 (2016)
https://doi.org/10.1021/acsenergylett.6b00002
5 X. He,, P. Liu,, H. Zhang,, Q. Liao,, J. Yao,, H. Fu,: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29(12), 1604510 (2017)
https://doi.org/10.1002/adma.201604510
6 F. Sahli,, J. Werner,, B.A. Kamino,, M. Bräuninger,, R. Monnard,, B. Paviet-Salomon,, L. Barraud,, L. Ding,, J.J. Diaz Leon,, D. Sacchetto,, G. Cattaneo,, M. Despeisse,, M. Boccard,, S. Nicolay,, Q. Jeangros,, B. Niesen,, C. Ballif,: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018)
https://doi.org/10.1038/s41563-018-0115-4
7 Z. Xiao,, R.A. Kerner,, L. Zhao,, N.L. Tran,, K.M. Lee,, T.W. Koh,, G.D. Scholes,, B.P. Rand,: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017)
https://doi.org/10.1038/nphoton.2016.269
8 Y. Fu,, H. Zhu,, J. Chen,, M.P. Hautzinger,, X.Y. Zhu,, S. Jin,: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4(3), 169–188 (2019)
https://doi.org/10.1038/s41578-019-0080-9
9 A. Kojima,, K. Teshima,, Y. Shirai,, T. Miyasaka,: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
https://doi.org/10.1021/ja809598r
10 NREL. Available at website of nrel.gov/pv/cell-efficiency.html
11 H. Zhu,, M.T. Trinh,, J. Wang,, Y. Fu,, P.P. Joshi,, K. Miyata,, S. Jin,, X.Y. Zhu,: Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29(1), 1603072 (2017)
https://doi.org/10.1002/adma.201603072
12 T. Etienne,, E. Mosconi,, F. De Angelis,: Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7(9), 1638–1645 (2016)
https://doi.org/10.1021/acs.jpclett.6b00564
13 C. Motta,, F. El-Mellouhi,, S. Kais,, N. Tabet,, F. Alharbi,, S. Sanvito,: Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6(1), 7026 (2015)
https://doi.org/10.1038/ncomms8026
14 J.M. Frost,, A. Walsh,: What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49(3), 528–535 (2016)
https://doi.org/10.1021/acs.accounts.5b00431
15 F. Zheng,, L.Z. Tan,, S. Liu,, A.M. Rappe,: Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15(12), 7794–7800 (2015)
https://doi.org/10.1021/acs.nanolett.5b01854
16 A. Pecchia,, D. Gentilini,, D. Rossi,, M. Auf der Maur,, A. Di Carlo,: Role of ferroelectric nanodomains in the transport properties of perovskite solar cells. Nano Lett. 16(2), 988–992 (2016)
https://doi.org/10.1021/acs.nanolett.5b03957
17 C. Wang,, W. Chu,, F. Ye,, Z. Ou,, Z. Li,, Q. Guo,, Z. Zheng,, Z. Wang,, X. Liu,, G. Fang,, O. Prezhdo,, T. Wang,, H. Xu,: Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites. Chem 8(11), 3051–3063 (2022)
https://doi.org/10.1016/j.chempr.2022.07.005
18 G. Niu,, X. Guo,, L. Wang,: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015)
https://doi.org/10.1039/C4TA04994B
19 S. Wang,, Q. Zhao,, A. Hazarika,, S. Li,, Y. Wu,, Y. Zhai,, X. Chen,, J.M. Luther,, G. Li,: Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nat. Commun. 14(1), 2216 (2023)
https://doi.org/10.1038/s41467-023-37943-6
20 J.P. Correa-Baena,, M. Saliba,, T. Buonassisi,, M. Grätzel,, A. Abate,, W. Tress,, A. Hagfeldt,: Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017)
https://doi.org/10.1126/science.aam6323
21 M. Saliba,, T. Matsui,, J.Y. Seo,, K. Domanski,, J.P. Correa-Baena,, M.K. Nazeeruddin,, S.M. Zakeeruddin,, W. Tress,, A. Abate,, A. Hagfeldt,, M. Grätzel,: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)
https://doi.org/10.1039/C5EE03874J
22 J. Huang,, M. Lai,, J. Lin,, P. Yang,: Rich chemistry in inorganic halide perovskite nanostructures. Adv. Mater. 30(48), e1802856 (2018)
https://doi.org/10.1002/adma.201802856
23 Q. Dong,, Y. Fang,, Y. Shao,, P. Mulligan,, J. Qiu,, L. Cao,, J. Huang,: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015)
https://doi.org/10.1126/science.aaa5760
24 Z. Xiao,, Q. Dong,, C. Bi,, Y. Shao,, Y. Yuan,, J. Huang,: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)
https://doi.org/10.1002/adma.201401685
25 W. Tian,, C. Zhao,, J. Leng,, R. Cui,, S. Jin,: Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015)
https://doi.org/10.1021/jacs.5b08045
26 X. Hu,, X. Wang,, P. Fan,, Y. Li,, X. Zhang,, Q. Liu,, W. Zheng,, G. Xu,, X. Wang,, X. Zhu,, A. Pan,: Visualizing carrier transport in metal halide perovskite nanoplates via electric field modulated photoluminescence imaging. Nano Lett. 18(5), 3024–3031 (2018)
https://doi.org/10.1021/acs.nanolett.8b00486
27 Z. Ou,, T. Wang,, J. Tang,, X. Zong,, W. Wang,, Q. Guo,, Y. Xu,, C. Zhu,, L. Wang,, W. Huang,, H. Xu,: Enabling and controlling negative photoconductance of FePS3 nanosheets by hot carrier trapping. Adv. Opt. Mater. 8(10), 2000201 (2020)
https://doi.org/10.1002/adom.202000201
28 J.M. Snaider,, Z. Guo,, T. Wang,, M. Yang,, L. Yuan,, K. Zhu,, L. Huang,: Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett. 3(6), 1402–1408 (2018)
https://doi.org/10.1021/acsenergylett.8b00560
29 T. Zhu,, L. Yuan,, Y. Zhao,, M. Zhou,, Y. Wan,, J. Mei,, L. Huang,: Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4(1), eaao3104 (2018)
https://doi.org/10.1126/sciadv.aao3104
30 J. Chen,, Y. Fu,, L. Samad,, L. Dang,, Y. Zhao,, S. Shen,, L. Guo,, S. Jin,: Vapor-phase epitaxial growth of aligned nanowire net-works of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett. 17(1), 460–466 (2017)
https://doi.org/10.1021/acs.nanolett.6b04450
31 H. Zhu,, Y. Fu,, F. Meng,, X. Wu,, Z. Gong,, Q. Ding,, M.V. Gustafsson,, M.T. Trinh,, S. Jin,, X.Y. Zhu,: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015)
https://doi.org/10.1038/nmat4271
32 S. Tao,, I. Schmidt,, G. Brocks,, J. Jiang,, I. Tranca,, K. Meerholz,, S. Olthof,: Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10(1), 2560 (2019)
https://doi.org/10.1038/s41467-019-10468-7
33 B. Wu,, H.T. Nguyen,, Z. Ku,, G. Han,, D. Giovanni,, N. Mathews,, H.J. Fan,, T.C. Sum,: Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals. Adv. Energy Mater. 6(14), 1600551 (2016)
https://doi.org/10.1002/aenm.201600551
34 H. Chung,, S.I. Jung,, H.J. Kim,, W. Cha,, E. Sim,, D. Kim,, W.K. Koh,, J. Kim,: Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X=Br and I) perovskite nanocrystals. Angew. Chem. Int. Ed. Engl. 56(15), 4160–4164 (2017)
https://doi.org/10.1002/anie.201611916
35 Y. Yang,, D.P. Ostrowski,, R.M. France,, K. Zhu,, J. van de Lagemaat,, J.M. Luther,, M.C. Beard,: Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10(1), 53–59 (2016)
https://doi.org/10.1038/nphoton.2015.213
36 J. Yang,, X. Wen,, H. Xia,, R. Sheng,, Q. Ma,, J. Kim,, P. Tapping,, T. Harada,, T.W. Kee,, F. Huang,, Y.B. Cheng,, M. Green,, A. Ho-Baillie,, S. Huang,, S. Shrestha,, R. Patterson,, G. Conibeer,: Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8(1), 14120 (2017)
https://doi.org/10.1038/ncomms14120
37 M. Li,, S. Bhaumik,, T.W. Goh,, M.S. Kumar,, N. Yantara,, M. Grätzel,, S. Mhaisalkar,, N. Mathews,, T.C. Sum,: Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8(1), 14350 (2017)
https://doi.org/10.1038/ncomms14350
38 X.Y. Zhu,, V. Podzorov,: Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6(23), 4758–4761 (2015)
https://doi.org/10.1021/acs.jpclett.5b02462
39 Y. Rakita,, S.R. Cohen,, N.K. Kedem,, G. Hodes,, D. Cahen,: Mechanical properties of APbX3 (A=Cs or CH3NH3, X=I or Br) perovskite single crystals. MRS Commun. 5(4), 623–629 (2015)
https://doi.org/10.1557/mrc.2015.69
[1] Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu. Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells[J]. Front. Optoelectron., 2023, 16(4): 47-.
[2] Max Karlsson, Jiajun Qin, Kaifeng Niu, Xiyu Luo, Johanna Rosen, Jonas Björk, Lian Duan, Weidong Xu, Feng Gao. Role of chloride on the instability of blue emitting mixed-halide perovskites[J]. Front. Optoelectron., 2023, 16(4): 37-.
[3] Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu. Dark current modeling of thick perovskite X-ray detectors[J]. Front. Optoelectron., 2022, 15(4): 43-.
[4] Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Front. Optoelectron., 2022, 15(4): 46-.
[5] Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39-.
[6] Longbo YANG, Jincong PANG, Zhifang TAN, Qi XIAO, Tong JIN, Jiajun LUO, Guangda NIU, Jiang TANG. Oxide perovskite Ba2AgIO6 wafers for X-ray detection[J]. Front. Optoelectron., 2021, 14(4): 473-481.
[7] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[8] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[9] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[10] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[11] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[12] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[13] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[14] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[15] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed