Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 24    https://doi.org/10.1007/s12200-023-00081-4
RESEARCH ARTICLE
Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb
Yuqi Hu1,2, Qingsong Bai2, Xi Tang3, Wei Xiong3, Yilu Wu1, Xin Zhang3, Yanlan Xiao4, Runchang Du2, Leiji Liu2, Guangqiong Xia3, Zhengmao Wu3, Junbo Yang5(), Heng Zhou4(), Jiagui Wu3()
1. College of Artificial Intelligence, Southwest University, Chongqing 400715, China
2. Chengdu Spaceon Electronics Corporation Ltd., Chengdu 610037, China
3. School of Physical Science and Technology, Southwest University, Chongqing 400715, China
4. Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, Chengdu 611731, China
5. Center of Material Science, National University of Defense Technology, Changsha 410073, China
 Download: PDF(5960 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.

Keywords Physical random bit      Chaos      Microcomb     
Corresponding Author(s): Junbo Yang,Heng Zhou,Jiagui Wu   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 26 October 2023
 Cite this article:   
Yuqi Hu,Qingsong Bai,Xi Tang, et al. Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb[J]. Front. Optoelectron., 2023, 16(3): 24.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00081-4
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/24
1 A. Uchida,, K. Amano,, M. Inoue,, K. Hirano,, S. Naito,, H. Someya,, I. Oowada,, T. Kurashige,, M. Shiki,, S. Yoshimori,, K. Yoshimura,, P. Davis,: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)
https://doi.org/10.1038/nphoton.2008.227
2 I. Reidler,, Y. Aviad,, M. Rosenbluh,, I. Kanter,: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)
https://doi.org/10.1103/PhysRevLett.103.024102
3 K. Hirano,, T. Yamazaki,, S. Morikatsu,, H. Okumura,, H. Aida,, A. Uchida,, S. Yoshimori,, K. Yoshimura,, T. Harayama,, P. Davis,: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18(6), 5512–5524 (2010)
https://doi.org/10.1364/OE.18.005512
4 R. Sakuraba,, K. Iwakawa,, K. Kanno,, A. Uchida,: Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23(2), 1470–1490 (2015)
https://doi.org/10.1364/OE.23.001470
5 L. Zhang,, B. Pan,, G. Chen,, L. Guo,, D. Lu,, L. Zhao,, W. Wang,: 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 7(1), 1–8 (2017)
https://doi.org/10.1038/srep45900
6 L. Wang,, T. Zhao,, D. Wang,, D. Wu,, L. Zhou,, J. Wu,, X. Liu,, Y. Wang,, A. Wang,: Real-time 14-Gbps physical random bit generator based on time-interleaved sampling of broadband white chaos. IEEE Photonics J. 9(2), 1–13 (2017)
https://doi.org/10.1109/JPHOT.2017.2690462
7 X.Z. Li,, S.C. Chan,: Heterodyne random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49(10), 829–838 (2013)
https://doi.org/10.1109/JQE.2013.2279261
8 J.G. Wu,, X. Tang,, Z.M. Wu,, G.Q. Xia,, G.Y. Feng,: Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys. 22(10), 1476–1480 (2012)
https://doi.org/10.1134/S1054660X12100246
9 X. Tang,, Z.M. Wu,, J.G. Wu,, T. Deng,, J.J. Chen,, L. Fan,, Z. Zhong,, G.Q. Xia,: Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 23(26), 33130–33141 (2015)
https://doi.org/10.1364/OE.23.033130
10 X. Tang,, Z.M. Wu,, J.G. Wu,, T. Deng,, L. Fan,, Z.Q. Zhong,, J. Chen,, G.Q. Xia,: Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers. Laser Phys. Lett. 12(1), 015003 (2015)
https://doi.org/10.1088/1612-2011/12/1/015003
11 C. Ran,, X. Tang,, Z.M. Wu,, G.Q. Xia,: Dual-channel physical random bits generation by a master-slave vertical-cavity surface-emitting lasers chaotic system. Laser Phys. 28(12), 126202 (2018)
https://doi.org/10.1088/1555-6611/aae06f
12 X. Tang,, G.Q. Xia,, E. Jayaprasath,, T. Deng,, X.D. Lin,, L. Fan,, Z. Gao,, Z.M. Wu,: Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access 6, 3565–3572 (2018)
https://doi.org/10.1109/ACCESS.2018.2800095
13 B. Shi,, C. Luo,, J.G.F. Flores,, G. Lo,, D.L. Kwong,, J. Wu,, C.W. Wong,: Gbps physical random bit generation based on the mesoscopic chaos of a silicon photonics crystal microcavity. Opt. Express 28(24), 36685–36695 (2020)
https://doi.org/10.1364/OE.404923
14 M. Virte,, E. Mercier,, H. Thienpont,, K. Panajotov,, M. Sciamanna,: Physical random bit generation from chaotic solitary laser diode. Opt. Express 22(14), 17271–17280 (2014)
https://doi.org/10.1364/OE.22.017271
15 X. Tang,, G.Q. Xia,, C. Ran,, T. Deng,, X.D. Lin,, L. Fan,, Z. Gao,, G.R. Lin,, Z.M. Wu,: Fast physical random bit generation based on a broadband chaotic entropy source originated from a filtered feedback WRC-FPLD. IEEE Photonics J. 11(2), 1–10 (2019)
https://doi.org/10.1109/JPHOT.2019.2903535
16 J.G. Wu,, Z.M. Wu,, T. Deng,, X. Tang,, L. Fan,, Y.Y. Xie,, G.Q. Xia,: 0.5 Gbits/s message bidirectional encryption and decryption based on two synchronized chaotic semiconductor lasers. In: Semiconductor Lasers and Applications V, vol. 8552, pp. 120–126. SPIE (2012)
https://doi.org/10.1117/12.999398
17 X. Tang,, J.G. Wu,, G.Q. Xia,, Z.M. Wu,: 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Wuli Xuebao 60(11), 110509 (2011)
https://doi.org/10.7498/aps.60.110509
18 C. Luo,, J.G. Flores,, B. Shi,, M. Yu,, G. Lo,, D.L. Kwong,, J. Wu,, C.W. Wong,: Gb/s physical random bits through mesoscopic chaos in integrated silicon optomechanical cavities. In: CLEO: QELS_Fundamental Science, vol. 5, pp. FTu4C. Optica Publishing Group (2019)
https://doi.org/10.1364/CLEO_QELS.2019.FTu4C.5
19 A. Zhao,, N. Jiang,, Y. Wang,, S. Liu,, C. Xue,, K. Qiu,: Fast physical random bit generation using broadband chaos generated by self-phase-modulated external-cavity semiconductor laser cascaded with microsphere resonator. In: CLEO: Science and Innovations, vol. 73, pp. JTu2A. Optical Society of America (2019)
https://doi.org/10.1364/CLEO_AT.2019.JTu2A.73
20 V. Brasch,, M. Geiselmann,, T. Herr,, G. Lihachev,, M.H. Pfeiffer,, M.L. Gorodetsky,, T.J. Kippenberg,: Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In: 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015)
https://doi.org/10.1109/CLEOPR.2015.7375870
21 A.R. Johnson,, A.S. Mayer,, A. Klenner,, K. Luke,, E.S. Lamb,, M.R. Lamont,, C. Joshi,, F. Okawachi,, W. Wise,, M. Lipson,, U. Keller,, A.L. Gaeta,: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)
https://doi.org/10.1364/OL.40.005117
22 J.M. Dudley,, G. Genty,, S. Coen,: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)
https://doi.org/10.1103/RevModPhys.78.1135
23 M. Peccianti,, A. Pasquazi,, Y. Park,, B.E. Little,, S.T. Chu,, D.J. Moss,, R. Morandotti,: Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3(1), 765 (2012)
https://doi.org/10.1038/ncomms1762
24 T.J. Kippenberg,, A.L. Gaeta,, M. Lipson,, M.L. Gorodetsky,: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
https://doi.org/10.1126/science.aan8083
25 C. Joshi,, J.K. Jang,, K. Luke,, X. Ji,, S.A. Miller,, A. Klenner,, Y. Okawachi,, M. Lipson,, A.L. Gaeta,: Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41(11), 2565–2568 (2016)
https://doi.org/10.1364/OL.41.002565
26 E. Obrzud,, S. Lecomte,, T. Herr,: Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600–607 (2017)
https://doi.org/10.1038/nphoton.2017.140
27 R. Chen,, H. Shu,, B. Shen,, L. Chang,, W. Xie,, W. Liao,, Z. Tao,, J. Bowers,, X. Wang,: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
https://doi.org/10.1038/s41566-023-01158-4
28 A. Rukhin,, J. Soto,, J. Nechvatal,, M. Smid,, E. Barker,: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revision 1a. NIST Special Publication, pp. 800–822. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Washington, D.C (2010)
29 I. Kanter,, Y. Aviad,, I. Reidler,, E. Cohen,, M. Rosenbluh,: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)
https://doi.org/10.1038/nphoton.2009.235
30 X.Z. Li,, S.C. Chan,: Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37(11), 2163–2165 (2012)
https://doi.org/10.1364/OL.37.002163
31 T. Butler,, C. Durkan,, D. Goulding,, S. Slepneva,, B. Kelleher,, S.P. Hegarty,, G. Huyet,: Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Opt. Lett. 41(2), 388–391 (2016)
https://doi.org/10.1364/OL.41.000388
32 J.Q. Kou,, C.C. Shen,, H. Shao,, J. Che,, X. Hou,, C.S. Chu,, K.K. Tian,, Y.H. Zhang,, Z.H. Zhang,, H.C. Kuo,: Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27(12), A643–A653 (2019)
https://doi.org/10.1364/OE.27.00A643
33 Z.Y. Xiao,, T. Li,, M. Cai,, H. Zhang,, Y. Huang,, C. Li,, B. Yao,, K. Wu,, J. Chen,: Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12(1), 33 (2023)
https://doi.org/10.1038/s41377-023-01076-8
34 L. Chang,, S. Liu,, J.E. Bowers,: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
https://doi.org/10.1038/s41566-021-00945-1
35 H. Zhang,, T. Tan,, H.J. Chen,, Y. Yu,, W. Wang,, B. Chang,, Y. Liang,, Y. Guo,, H. Zhou,, H. Xia,, Q. Gong,, C. Wong,, Y. Rao,, Y.F. Xiao,, B. Yao,: Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett. 130(15), 153802 (2023)
https://doi.org/10.1103/PhysRevLett.130.153802
36 T. Tan,, Z. Yuan,, H. Zhang,, G. Yan,, S. Zhou,, N. An,, B. Peng,, G. Soavi,, Y. Rao,, B. Yao,: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)
https://doi.org/10.1038/s41467-021-26740-8
37 H. Guo,, M. Karpov,, E. Lucas,, A. Kordts,, M.H.P. Pfeiffer,, V. Brasch,, G. Lihachev,, V.E. Lobanov,, M.L. Gorodetsky,, T.J. Kippenberg,: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
https://doi.org/10.1038/nphys3893
38 T. Herr,, V. Brasch,, J.D. Jost,, I. Mirgorodskiy,, G. Lihachev,, M.L. Gorodetsky,, T.J. Kippenberg,: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)
https://doi.org/10.1103/PhysRevLett.113.123901
39 C. Qin,, J. Du,, T. Tan,, B. Chang,, K. Jia,, Y. Liang,, W. Wang,, Y. Guo,, H. Xia,, S. Zhu,, Y. Rao,, Z. Xie,, B. Yao,: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662 (2023)
https://doi.org/10.1002/lpor.202200662
[1] Xinhua ZHU, Mengfan CHENG, Lei DENG, Xingxing JIANG, Deming LIU. Extracting the time delay signature of coupled optical chaotic systems by mutual statistical analysis[J]. Front. Optoelectron., 2017, 10(4): 378-387.
[2] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[3] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[4] Lingbo ZENG, Tao DENG, Zhengmao WU, Jiagui WU, Guangqiong XIA. Impacts of mismatched intrinsic parameter on leader-laggard synchronization between two mutually coupled VCSELs[J]. Front Optoelec Chin, 2011, 4(3): 298-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed