Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 28    https://doi.org/10.1007/s12200-023-00082-3
RESEARCH ARTICLE
Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics
Jungang He1,2(), You Ge1, Ya Wang2, Mohan Yuan1, Hang Xia1, Xingchen Zhang1, Xiao Chen1, Xia Wang1, Xianchang Zhou1, Kanghua Li2(), Chao Chen2, Jiang Tang2
1. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2. Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(2285 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide (ZnO) as the electron transport layer (ETL). However, it is found that the surface defects of ZnO present a difficulty in completion of passivation, and this impedes the continuous progress of devices. To address this disadvantage, fluoride (F) anions are employed for the surface passivation of ZnO through a chemical bath deposition method (CBD). The F-passivated ZnO ETL possesses decreased densities of oxygen vacancy and a favorable band alignment. Benefiting from these improvements, PbSe CQD PVs report an efficiency of 10.04%, comparatively 9.4% higher than that of devices using sol-gel (SG) ZnO as ETL. We are optimistic that this interface passivation strategy has great potential in the development of solution-processed CQD optoelectronic devices.

Keywords Zinc oxide      Surface passivation      Band alignment      Quantum-dot solar cells     
Corresponding Author(s): Jungang He,Kanghua Li   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 08 November 2023
 Cite this article:   
Jungang He,You Ge,Ya Wang, et al. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2023, 16(3): 28.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00082-3
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/28
1 J. Yang,, H. Hu,, Y. Lv,, M. Yuan,, B. Wang,, Z. He,, S. Chen,, Y. Wang,, Z. Hu,, M. Yu,, X. Zhang,, J. He,, J. Zhang,, H. Liu,, H.-Y. Hsu,, J. Tang,, H. Song,, X. Lan,: Ligand-engineered HgTe colloidal quantum dot solids for infrared photodetectors. Nano Lett 22(8), 3465–3472 (2022)
https://doi.org/10.1021/acs.nanolett.2c00950
2 J. Liu,, P. Liu,, D. Chen,, T. Shi,, X. Qu,, L. Chen,, T. Wu,, J. Ke,, K. Xiong,, M. Li,, H. Song,, W. Wei,, J. Cao,, J. Zhang,, L. Gao,, J. Tang,: A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 5(7), 443–451 (2022)
https://doi.org/10.1038/s41928-022-00779-x
3 W. Ahmad,, J. He,, Z. Liu,, K. Xu,, Z. Chen,, X. Yang,, D. Li,, Y. Xia,, J. Zhang,, C. Chen,: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater 31(33), 1900593 (2019)
https://doi.org/10.1002/adma.201900593
4 M. Yuan,, H. Hu,, Y. Wang,, H. Xia,, X. Zhang,, B. Wang,, Z. He,, M. Yu,, Y. Tan,, Z. Shi,, K. Li,, X. Yang,, J. Yang,, M. Li,, X. Chen,, L. Hu,, X. Peng,, J. He,, C. Chen,, X. Lan,, J. Tang,: Cation-exchange enables in situ preparation of PbSe quantum dot ink for high performance solar cells. Small 18(48), 2205356 (2022)
https://doi.org/10.1002/smll.202205356
5 L. Gao,, L.N. Quan,, F.P. García de Arquer,, Y. Zhao,, R. Munir,, A. Proppe,, R. Quintero-Bermudez,, C. Zou,, Z. Yang,, M.I. Saidaminov,, O. Voznyy,, S. Kinge,, Z. Lu,, S.O. Kelley,, A. Amassian,, J. Tang,, E.H. Sargent,: Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 14(4), 227–233 (2020)
https://doi.org/10.1038/s41566-019-0577-1
6 Y. Deng,, X. Lin,, W. Fang,, D. Di,, L. Wang,, R.H. Friend,, X. Peng,, Y. Jin,: Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 11(1), 2309 (2020)
https://doi.org/10.1038/s41467-020-15944-z
7 M. Zhu,, X. Liu,, S. Liu,, C. Chen,, J. He,, W. Liu,, J. Yang,, L. Gao,, G. Niu,, J. Tang,, J. Zhang,: Efficient PbSe colloidal quantum dot solar cells using SnO2 as a buffer layer. ACS Appl. Mater. Inter 12(2), 2566–2571 (2020)
https://doi.org/10.1021/acsami.9b19651
8 M. Yuan,, X. Wang,, X. Chen,, J. He,, K. Li,, B. Song,, H. Hu,, L. Gao,, X. Lan,, C. Chen,, J. Tang,: Phase-transfer exchange lead chalcogenide colloidal quantum dots: Ink Preparation, film Assembly, and solar cell construction. Small 18(2), 2102340 (2022)
https://doi.org/10.1002/smll.202102340
9 A.G. Midgett,, J.M. Luther,, J.T. Stewart,, D.K. Smith,, L.A. Padilha,, V.I. Klimov,, A.J. Nozik,, M.C. Beard,: Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSxSe1-x alloyed quantum dots. Nano Lett. 13(7), 3078–3085 (2013)
https://doi.org/10.1021/nl4009748
10 D.V. Talapin,, C.B. Murray,: PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310(5745), 86–89 (2005)
https://doi.org/10.1126/science.1116703
11 O.E. Semonin,, J.M. Luther,, S. Choi,, H.-Y. Chen,, J. Gao,, A.J. Nozik,, M.C. Beard,: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)
https://doi.org/10.1126/science.1209845
12 N.J. Davis,, M.L. Böhm,, M. Tabachnyk,, F. Wisnivesky-Rocca-Rivarola,, T.C. Jellicoe,, C. Ducati,, B. Ehrler,, N.C. Greenham,: Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259–8265 (2015)
https://doi.org/10.1038/ncomms9259
13 J. Zhang,, J. Gao,, C.P. Church,, E.M. Miller,, J.M. Luther,, V.I. Klimov,, M.C. Beard,: PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 14(10), 6010–6015 (2014)
https://doi.org/10.1021/nl503085v
14 S. Milan,, A.Y. Koposov,, J.A. Mcguire,, R.K. Schulze,, T. Olexandr,, J.M. Pietryga,, V.I. Klimov,: Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4(4), 2021–2034 (2010)
https://doi.org/10.1021/nn100131w
15 Y. Xia,, W. Chen,, P. Zhang,, S. Liu,, K. Wang,, X. Yang,, H. Tang,, L. Lian,, J. He,, X. Liu,, G. Liang,, M. Tan,, L. Gao,, H. Liu,, H. Song,, D. Zhang,, J. Gao,, K. Wang,, X. Lan,, X. Zhang,, P. Müller-Buschbaum,, J. Tang,, J. Zhang,: Facet control for trapstate suppression in colloidal quantum dot solids. Adv. Funct. Mater. 30(22), 2000594 (2020)
https://doi.org/10.1002/adfm.202000594
16 Y. Xia,, S. Liu,, K. Wang,, X. Yang,, L. Lian,, Z. Zhang,, J. He,, G. Liang,, S. Wang,, M. Tan,, H. Song,, D. Zhang,, J. Gao,, J. Tang,, M.C. Beard,, J. Zhang,: Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2020)
https://doi.org/10.1002/adfm.201907379
17 Y. Liu,, F. Li,, G. Shi,, Z. Liu,, X. Lin,, Y. Shi,, Y. Chen,, X. Meng,, Y. Lv,, W. Deng,, X. Pan,, W. Ma,: PbSe quantum dot solar cells based on directly synthesized semiconductive inks. ACS Energy Lett. 5(12), 3797–3803 (2020)
https://doi.org/10.1021/acsenergylett.0c02011
18 M. Liu,, O. Voznyy,, R. Sabatini,, F.P.G. De Arquer,, R. Munir,, A.H. Balawi,, X. Lan,, F. Fan,, G. Walters,, A.R. Kirmani,, S. Hoogland,, F. Laquai,, A. Amassian,, E.H. Sargent,: Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater 16(2), 258–263 (2017)
https://doi.org/10.1038/nmat4800
19 M. Liu,, Y. Chen,, C.-S. Tan,, R. Quintero-Bermudez,, A.H. Proppe,, R. Munir,, H. Tan,, O. Voznyy,, B. Scheffel,, G. Walters,, A.P.T. Kam,, S. Bin,, M.J. Choi,, S. Hoogland,, A. Amassian,, S.O. Kelley,, F.P.G.D. Arquer,, E.H. Sargent,: Lattice anchoring stabilizes solution-processed semiconductors. Nature 570(7759), 96–101 (2019)
https://doi.org/10.1038/s41586-019-1239-7
20 Z. Ning,, Y. Ren,, S. Hoogland,, O. Voznyy,, L. Levina,, P. Stadler,, X. Lan,, D. Zhitomirsky,, E.H. Sargent,: All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater 24(47), 6295–6299 (2012)
https://doi.org/10.1002/adma.201202942
21 H.I. Kim,, S.-W. Baek,, H.J. Cheon,, S.U. Ryu,, S. Lee,, M.-J. Choi,, K. Choi,, M. Biondi,, S. Hoogland,, F.P.G. de Arquer,, S.-K. Kwon,, Y.-H. Kim,, T. Park,, E.H. Sargent,: A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater 32(48), 2004985 (2020)
https://doi.org/10.1002/adma.202004985
22 C. Ding,, D. Wang,, D. Liu,, H. Li,, Y. Li,, S. Hayase,, T. Sogabe,, T. Masuda,, Y. Zhou,, Y. Yao,, Z. Zou,, R. Wang,, Q. Shen,: Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy. Mater 12(35), 2201676 (2022)
https://doi.org/10.1002/aenm.202201676
23 R. Azmi,, G. Seo,, T.K. Ahn,, S.-Y. Jang,: High-efficiency air-stable colloidal quantum dot solar cells based on a potassium-doped ZnO electron-accepting layer. ACS Appl. Mater. Inter 10(41), 35244–35249 (2018)
https://doi.org/10.1021/acsami.8b12577
24 H.K. Woo,, M.S. Kang,, T. Park,, J. Bang,, S. Jeon,, W.S. Lee,, J. Ahn,, G. Cho,, D.-K. Ko,, Y. Kim,, D.-H. Ha,, S.J. Oh,: Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. Nanoscale 11(37), 17498–17505 (2019)
https://doi.org/10.1039/C9NR06346C
25 F. Yang,, Y. Xu,, M. Gu,, S. Zhou,, Y. Wang,, K. Lu,, Z. Liu,, X. Ling,, Z. Zhu,, J. Chen,, Z. Wu,, Y. Zhang,, Y. Xue,, F. Li,, J. Yuan,, W. Ma,: Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. J. Mater. Chem. A 6(36), 17688–17697 (2018)
https://doi.org/10.1039/C8TA05946B
26 J. Choi,, J.W. Jo,, F.P.G. de Arquer,, Y.-B. Zhao,, B. Sun,, J. Kim,, M.-J. Choi,, S.-W. Baek,, A.H. Proppe,, A. Seifitokaldani,, D.-H. Nam,, P. Li,, O. Ouellette,, Y. Kim,, O. Voznyy,, S. Hoogland,, S.O. Kelley,, Z.-H. Lu,, E.H. Sargent,: Activated electron-transport layers for infrared quantum dot optoelectronics. Adv. Mater 30(29), 1801720 (2018)
https://doi.org/10.1002/adma.201801720
27 J. Choi,, Y. Kim,, J.W. Jo,, J. Kim,, B. Sun,, G. Walters,, F.P. García de Arquer,, R. Quintero-Bermudez,, Y. Li,, C.S. Tan,, L.N. Quan,, A.P.T. Kam,, S. Hoogland,, Z. Lu,, O. Voznyy,, E.H. Sargent,: Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics. Adv. Mater 29(33), 1702350 (2017)
https://doi.org/10.1002/adma.201702350
28 E. Della Gaspera,, D.F. Kennedy,, J. van Embden,, A.S.R. Chesman,, T.R. Gengenbach,, K. Weber,, J.J. Jasieniak,: Flash-assisted processing of highly conductive Zinc Oxide electrodes from water. Adv. Funct. Mater. 25(47), 7263–7271 (2015)
https://doi.org/10.1002/adfm.201503421
29 Y. Zhang,, C. Liu,, J. Liu,, J. Xiong,, J. Liu,, K. Zhang,, Y. Liu,, M. Peng,, A. Yu,, A. Zhang,, Y. Zhang,, Z. Wang,, J. Zhai,, Z.L. Wang,: Lattice Strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Appl. Mater. Inter 8(2), 1381–1387 (2016)
https://doi.org/10.1021/acsami.5b10345
30 L. Che,, J. Song,, J. Yang,, X. Chen,, J. Li,, N. Zhang,, S. Yang,, Y. Wang,: Fluorine, chlorine, and gallium co-doped zinc oxide transparent conductive films fabricated using the sol-gel spin method. J. Materiomics 9(4), 745–753 (2023)
https://doi.org/10.1016/j.jmat.2023.02.002
31 X. Chen,, K. Liu,, X. Wang,, B. Li,, Z. Zhang,, X. Xie,, D. Shen,: Performance enhancement of a ZnMgO film UV photodetector by HF solution treatment. J. Mater. Chem. C 5(40), 10645–10651 (2017)
https://doi.org/10.1039/C7TC03352D
32 X. Shen,, J. Kang,, W. Niu,, M. Wang,, Q. Zhang,, Y. Wang,: Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catal. Sci. Technol. 7(16), 3598–3612 (2017)
https://doi.org/10.1039/C7CY01041A
33 J. Xia,, D. Mao,, B. Zhang,, Q. Chen,, Y. Zhang,, Y. Tang,: Catalytic properties of fluorinated alumina for the production of dimethyl ether. Catal. Commun. 7(6), 362–366 (2006)
https://doi.org/10.1016/j.catcom.2005.12.011
34 K. Liu,, M.A. Marwat,, W. Ma,, T. Wei,, M. Li,, P. Fan,, D. Lu,, Y. Tian,, C. Samart,, B. Ye,, J. He,, H. Zhang,: Enhanced energy storage performance of nanocomposites filled with paraelectric ceramic nanoparticles by weakening the electric field distortion. Ceram. Int 46(13), 21149–21155 (2020)
https://doi.org/10.1016/j.ceramint.2020.05.192
35 K. Li,, Y. Lu,, X. Yang,, L. Fu,, J. He,, X. Lin,, J. Zheng,, S. Lu,, C. Chen,, J. Tang,: Filter-free self-power CdSe/Sb2(S1–x, Sex)3 nearinfrared narrowband detection and imaging. InfoMat 3(10), 1145–1153 (2021)
https://doi.org/10.1002/inf2.12237
36 C. Chen,, X. Liu,, K. Li,, S. Lu,, S. Wang,, S. Li,, Y. Lu,, J. He,, J. Zheng,, X. Lin,, J. Tang,: High-efficient Sb2Se3 solar cell using ZnxCd1-xS n-type layer. Appl. Phys. Lett. 118(17), 172103 (2021)
https://doi.org/10.1063/5.0030430
37 J. He,, M. Yuan,, X. Wang,, X. Chen,, X. Peng,, L. Hu,, X. Zhao,, J. Liu,, J. Li,, K. Li,, C. Chen,, J. Tang,: Extrinsic photoresponse of Ag doped MAPbBr3 perovskite crystals. Appl. Surf. Sci 614, 156230 (2023)
https://doi.org/10.1016/j.apsusc.2022.156230
38 X. Yang,, L. Hu,, H. Deng,, K. Qiao,, C. Hu,, Z. Liu,, S. Yuan,, J. Khan,, D. Li,, J. Tang,, H. Song,, C. Cheng,: Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017)
https://doi.org/10.1007/s40820-016-0124-2
[1] Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39-.
[2] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[3] Xiaoyue LI,Sheng YIN,Dong XU. Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers[J]. Front. Optoelectron., 2015, 8(4): 445-450.
[4] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[5] Xiaoyan LI,Pei LIANG,Le WANG,Feihong YU. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
[6] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[7] Yanhua TONG, Feng CAO, Peisong TANG, Haifeng CHEN, Guoxiang PAN, Minhong XU. Controllable synthesis of quasi-spherelike ZnO hierarchical nanostructures and performance of their dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(2): 181-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed