Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 29    https://doi.org/10.1007/s12200-023-00084-1
REVIEW ARTICLE
Multimode sensing based on optical microcavities
Yanran Wu1,2, Bing Duan1,2, Changhong Li3(), Daquan Yang1,2()
1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
3. School of Electronic Information, Qingdao University, Qingdao 266071, China
 Download: PDF(2393 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.

Keywords Optical microcavity      Multimode sensing      Multiparameter measurement      Sensing mechanisms     
Corresponding Author(s): Changhong Li,Daquan Yang   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 08 November 2023
 Cite this article:   
Yanran Wu,Bing Duan,Changhong Li, et al. Multimode sensing based on optical microcavities[J]. Front. Optoelectron., 2023, 16(3): 29.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00084-1
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/29
1 Y. Zhi,, X. Yu,, Q. Gong,, L. Yang,, Y. Xiao,: Single nanoparticle detection using optical microcavities. Adv. Mater. 29(12), 1604920 (2017)
https://doi.org/10.1002/adma.201604920
2 F. Vollmer,, L. Yang,: Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4), 267–291 (2012)
https://doi.org/10.1515/nanoph-2012-0021
3 X. Fan,: Advanced photonic structures for biological and chemical detection. Springer, New York (2009)
https://doi.org/10.1007/978-0-387-98063-8
4 K. Wang,, Y.P. Gao,, R. Jiao,, C. Wang,: Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 17(4), 42201 (2022)
https://doi.org/10.1007/s11467-022-1165-2
5 A. Artar,, A.A. Yanik,, H. Altug,: Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95(5), 051105 (2009)
https://doi.org/10.1063/1.3202391
6 X. Li,, N. Chen,, X. Zhou,, P. Gong,, S. Wang,, Y. Zhang,, Y. Zhao,: A review of specialty fiber biosensors based on interferometer configuration. J. BiophotonicsBiophotonics 14(6), e202100068 (2021)
https://doi.org/10.1002/jbio.202100068
7 D. Rho,, C. Breaux,, S. Kim,: Label-free optical resonator-based biosensors. Sensors (Basel) 20(20), 5901 (2020)
https://doi.org/10.3390/s20205901
8 S. Tabassum,, R. Kumar,: Advances in fiber-optic technology for point-of-care diagnosis and in vivo biosensing. Adv. Mater. Technol. 5(5), 1900792 (2020)
https://doi.org/10.1002/admt.201900792
9 C. Chen,, J. Wang,: Optical biosensors: an exhaustive and comprehensive review. Analyst (Lond.) 145(5), 1605–1628 (2020)
https://doi.org/10.1039/C9AN01998G
10 L. Yi,, C. Li,: Simulation research on blood detection sensing with parity-time symmetry structure. Crystals (Basel) 11(9), 1030 (2021)
https://doi.org/10.3390/cryst11091030
11 K. Nagarajan,, A. Thomas,, T.W. Ebbesen,: Chemistry under vibrational strong coupling. J. Am. Chem. Soc. 143(41), 16877–16889 (2021)
https://doi.org/10.1021/jacs.1c07420
12 T.E. Li,, B. Cui,, J.E. Subotnik,, A. Nitzan,: Molecular polaritonics: chemical dynamics under strong light-matter coupling. Annu. Rev. Phys. Chem. Rev. Phys. Chem. 73(1), 43–71 (2022)
https://doi.org/10.1146/annurev-physchem-090519-042621
13 H. Dong,, C. Zhang,, X. Liu,, J. Yao,, Y.S. Zhao,: Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49(3), 951–982 (2020)
https://doi.org/10.1039/C9CS00598F
14 K. Wang,, H. Wang,, X.Y. Wu,, Y. Zhang,, D. Yang,, R. Jiao,, C. Wang,: Ultrasound sensing using packaged microsphere cavity in the underwater environment. Sensors (Basel) 22(11), 4190 (2022)
https://doi.org/10.3390/s22114190
15 X. Xu,, W. Chen,, G. Zhao,, Y. Li,, C. Lu,, L. Yang,: Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light Sci. Appl. 7(1), 62 (2018)
https://doi.org/10.1038/s41377-018-0063-4
16 N. Liu,, L. Shi,, S. Zhu,, X. Xu,, S. Yuan,, X. Zhang,: Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing. Opt. Express 26(1), 195–203 (2018)
https://doi.org/10.1364/OE.26.000195
17 L.H. Chen,, C.C. Chan,, R. Menon,, P. Balamurali,, W.C. Wong,, X.M. Ang,, P.B. Hu,, M. Shaillender,, B. Neu,, P. Zu,, Z.Q. Tou,, C.L. Poh,, K.C. Leong,: Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B Chem. 188, 185–192 (2013)
https://doi.org/10.1016/j.snb.2013.06.093
18 S. Lyu,, Z. Wu,, X. Shi,, Q. Wu,: Optical fiber biosensors for protein detection: a review. In Photonics 9(12), 987 (2022)
https://doi.org/10.3390/photonics9120987
19 F. Vollmer,, S. Arnold,, D. Keng,: Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008)
https://doi.org/10.1073/pnas.0808988106
20 M.D. Baaske,, F. Vollmer,: Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics 10(11), 733–739 (2016)
https://doi.org/10.1038/nphoton.2016.177
21 V.R. Dantham,, S. Holler,, C. Barbre,, D. Keng,, V. Kolchenko,, S. Arnold,: Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13(7), 3347–3351 (2013)
https://doi.org/10.1021/nl401633y
22 D.Q. Yang,, B. Duan,, X. Liu,, A.Q. Wang,, X.G. Li,, Y.F. Ji,: Photonic crystal nanobeam cavities for nanoscale optical sensing: a review. Micromachines (Basel) 11(1), 72 (2020)
https://doi.org/10.3390/mi11010072
23 J. Xia,, Q. Qiao,, G. Zhou,, F.S. Chau,, G. Zhou,: Opto-mechanical photonic crystal cavities for sensing application. Appl. Sci. (Basel) 10(20), 7080 (2020)
https://doi.org/10.3390/app10207080
24 Q. Qiao,, J. Xia,, C. Lee,, G. Zhou,: Applications of photonic crystal nanobeam cavities for sensing. Micromachines (Basel) 9(11), 541 (2018)
https://doi.org/10.3390/mi9110541
25 Y. Wu,, B. Duan,, J. Song,, H. Tian,, J.H. Chen,, D. Yang,, S. Huang,: Simultaneous temperature and pressure sensing based on a single optical resonator. Opt. Express 31(12), 18851–18861 (2023)
https://doi.org/10.1364/OE.489625
26 D.Q. Yang,, J.H. Chen,, Q.T. Cao,, B. Duan,, H.J. Chen,, X.C. Yu,, Y.F. Xiao,: Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light Sci. Appl. 10(1), 128 (2021)
https://doi.org/10.1038/s41377-021-00570-1
27 J. Liao,, L. Yang,: Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci. Appl. 10(1), 32 (2021)
https://doi.org/10.1038/s41377-021-00472-2
28 B. Duan,, H. Zou,, J.H. Chen,, C.H. Ma,, X. Zhao,, X. Zheng,, C. Wang,, L. Liu,, D. Yang,: High-precision whispering gallery microsensors with ergodic spectra empowered by machine learning. Photon. Res. 10(10), 2343–2348 (2022)
https://doi.org/10.1364/PRJ.464133
29 Z. Chen,, Z. Guo,, X. Mu,, Q. Li,, X. Wu,, H.Y. Fu,: Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt. Express 27(25), 36932–36940 (2019)
https://doi.org/10.1364/OE.27.036932
30 X. Zhan,, Y. Liu,, K.L. Yang,, D. Luo,: State-of-the-art development in liquid crystal biochemical sensors. Biosensors (Basel) 12(8), 577 (2022)
https://doi.org/10.3390/bios12080577
31 J. Mathew,, O. Schneller,, D. Polyzos,, D. Havermann,, R.M. Carter,, W.N. MacPherson,, D.P. Hand,, R.R.J. Maier,: In-fiber Fabry–Perot cavity sensor for high-temperature applications. J. Lightwave Technol. 33(12), 2419–2425 (2015)
https://doi.org/10.1109/JLT.2015.2397936
32 M.A.M. Johari,, M.I.M.A. Khudus,, M.H.B. Jali,, A. Al Noman,, S.W. Harun,: Effect of size on single and double optical microbottle resonator humidity sensors. Sens. Actuators A Phys. 284, 286–291 (2018)
https://doi.org/10.1016/j.sna.2018.10.035
33 Y.N. Zhang,, N. Zhu,, P. Gao,, Y. Zhao,: Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. J. Magn. Magn. Mater. 493, 165701 (2020)
https://doi.org/10.1016/j.jmmm.2019.165701
34 X. Jiang,, A.J. Qavi,, S.H. Huang,, L. Yang,: Whispering-gallery sensors. Matter 3(2), 371–392 (2020)
https://doi.org/10.1016/j.matt.2020.07.008
35 M.D. Baaske,, M.R. Foreman,, F. Vollmer,: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. Nanotechnol. 9(11), 933–939 (2014)
https://doi.org/10.1038/nnano.2014.180
36 J.D. Swaim,, J. Knittel,, W.P. Bowen,: Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl. Phys. Lett. 102(18), 183106 (2013)
https://doi.org/10.1063/1.4804243
37 J. Zhu,, S.K. Ozdemir,, Y. Xiao,, L. Li,, L. He,, D. Chen,, L. Yang,: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4(1), 46–49 (2010)
https://doi.org/10.1038/nphoton.2009.237
38 B.B. Li,, W.R. Clements,, X.C. Yu,, K. Shi,, Q. Gong,, Y.F. Xiao,: Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014)
https://doi.org/10.1073/pnas.1408453111
39 M. Jin,, S.J. Tang,, J.H. Chen,, X.C. Yu,, H. Shu,, Y. Tao,, K. Chen Antony,, Q. Gong,, X. Wang,, Y.F. Xiao,: 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat. Commun. Commun. 12(1), 1973 (2021)
https://doi.org/10.1038/s41467-021-22271-4
40 X. Yi,, Y.F. Xiao,, Y. Li,, Y.C. Liu,, B.B. Li,, Z.P. Liu,, Q. Gong,: Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator. Appl. Phys. Lett. 97(20), 203705 (2010)
https://doi.org/10.1063/1.3520138
41 Y. Xu,, S.J. Tang,, X.C. Yu,, Y.L. Chen,, D. Yang,, Q. Gong,, Y.F. Xiao,: Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A (Coll. Park) 97(6), 063828 (2018)
https://doi.org/10.1103/PhysRevA.97.063828
42 L. Kohler,, M. Mader,, C. Kern,, M. Wegener,, D. Hunger,: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse micro-cavity. Nat. Commun. Commun. 12(1), 1–7 (2021)
https://doi.org/10.1038/s41467-021-26719-5
43 L. Shao,, X. Jiang,, X. Yu,, B. Li,, W.R. Clements,, F. Vollmer,, W. Wang,, Y. Xiao,, Q. Gong,: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 25(39), 5616–5620 (2013)
https://doi.org/10.1002/adma201302572
44 R. Madugani,, Y. Yang,, V.H. Le,, J.M. Ward,, S.N. Chormaic,: Linear laser tuning using a pressure-sensitive microbubble resonator. IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016)
https://doi.org/10.1109/LPT.2016.2532341
45 S. Liu,, W. Sun,, Y. Wang,, X. Yu,, K. Xu,, Y. Huang,, S. Xiao,, Q. Song,: End-fire injection of light into high Q silicon microdisks. Optica 5(5), 612–616 (2018)
https://doi.org/10.1364/OPTICA.5.000612
46 X. Zhang,, L. Liu,, L. Xu,: Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self referenced differentialmode detection scheme. Appl. Phys. Lett. 104(3), 033703 (2014)
https://doi.org/10.1063/1.4861596
47 M. Li,, X. Wu,, L. Liu,, X. Fan,, L. Xu,: Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection. Anal. Chem. 85(19), 9328–9332 (2013)
https://doi.org/10.1021/ac402174x
48 R. Luo,, H. Jiang,, H. Liang,, Y. Chen,, Q. Lin,: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017)
https://doi.org/10.1364/OL.42.001281
49 A.A. Savchenkov,, A.B. Matsko,, V.S. Ilchenko,, N. Yu,, L. Maleki,: Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B 24(12), 2988–2997 (2007)
https://doi.org/10.1364/JOSAB.24.002988
50 Z. Guo,, Q. Lu,, C. Zhu,, B. Wang,, Y. Zhou,, X. Wu,: Ultra-sensitive biomolecular detection by external referencing optofluidic microbubble resonators. Opt. Express 27(9), 12424–12435 (2019)
https://doi.org/10.1364/OE.27.012424
51 X. Zhao,, Y. Zhou,, Y. Li,, J. Guo,, Z. Liu,, M. Luo,, Z. Guo,, X. Yang,, M. Zhang,, Y. Wang,, X. Wu,: Ultrasensitive optofluidic coupled Fabry–Perot capillary sensors. Opt. Express 30(25), 45070–45081 (2022)
https://doi.org/10.1364/OE.474132
52 Y. Dong,, P. Sun,, X. Zeng,, J. Wang,, Y. Li,, M. Wang,, H. Wang,: Displacement sensing in a multimode SNAP microcavity by an artificial neural network. Opt. Express 30(15), 27015–27027 (2022)
https://doi.org/10.1364/OE.459420
53 Y. Zhou,, Z. Yuan,, X. Gong,, M.D. Birowosuto,, C. Dang,, Y.C. Chen,: Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer. Adv. Photonics 2(6), 066002 (2020)
https://doi.org/10.1117/1.AP.2.6.066002
54 Y. Kumagai,, K. Takubo,, K. Kawada,, K. Aoyama,, Y. Endo,, T. Ozawa,, T. Hirasawa,, T. Yoshio,, S. Ishihara,, M. Fujishiro,, J. Tamaru,, E. Mochiki,, H. Ishida,, T. Tada,: Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus 16(2), 180–187 (2019)
https://doi.org/10.1007/s10388-018-0651-7
55 P. Malik,, M. Pathania,, V.K. Rathaur,: Overview of artificial intelligence in medicine. J. Family Med. Prim. Care 8(7), 2328 (2019)
https://doi.org/10.4103/jfmpc.jfmpc_440_19
56 S. Suganyadevi,, V. Seethalakshmi,, K. Balasamy,: A review on deep learning in medical image analysis. Int. J. Multimed. Inf. Retr. 11(1), 19–38 (2022)
https://doi.org/10.1007/s13735-021-00218-1
57 J. He,, S.L. Baxter,, J. Xu,, J. Xu,, X. Zhou,, K. Zhang,: The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25(1), 30–36 (2019)
https://doi.org/10.1038/s41591-018-0307-0
58 J. Lu,, R. Niu,, S. Wan,, C.H. Dong,, Z. Le,, Y. Qin,, Y. Hu,, W. Hu,, C.L. Zou,, H. Ren,: Experimental demonstration of multimode microresonator sensing by machine learning. IEEE Sens. J. 21(7), 9046–9053 (2021)
https://doi.org/10.1109/JSEN.2020.3049015
59 D. Hu,, C.L. Zou,, H. Ren,, J. Lu,, Z. Le,, Y. Qin,, S. Guo,, C. Dong,, W. Hu,: Multi-parameter sensing in a multimode self-interference microring resonator by machine learning. Sensors (Basel) 20(3), 709 (2020)
https://doi.org/10.3390/s20030709
60 Y. Zhang,, J. Lu,, Z. Le,, C.H. Dong,, H. Zheng,, Y. Qin,, P. Yu,, W. Hu,, C.L. Zou,, H. Ren,: Proposal of unsupervised gas classification by multimode microresonator. IEEE Photonics J. 13(2), 5800111 (2021)
https://doi.org/10.1109/JPHOT.2021.3069582
61 S. Chugh,, A. Gulistan,, S. Ghosh,, B.M.A. Rahman,: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)
https://doi.org/10.1364/OE.27.036414
62 G. An,, K. Omodaka,, K. Hashimoto,, S. Tsuda,, Y. Shiga,, N. Takada,, T. Kikawa,, H. Yokota,, M. Akiba,, T. Nakazawa,: Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J. Healthc. Eng. 1 (2019)
https://doi.org/10.1155/2019/4061313
63 H. Chen,, Z. Wang,, Y. Wang,, C. Yu,, R. Niu,, C.L. Zou,, J. Lu,, C.H. Dong,, H. Ren,: Machine learning-assisted high-accuracy and large dynamic range thermometer in high-Q microbubble resonators. Opt. Express 31(10), 16781–16794 (2023)
https://doi.org/10.1364/OE.488341
64 A.V. Saetchnikov,, E.A. Tcherniavskaia,, V.V. Skakun,, V.A. Saetchnikov,, A. Ostendorf,: Reusable dispersed resonators-based biochemical sensor for parallel probing. IEEE Sens. J. 19(17), 7644–7651 (2019)
https://doi.org/10.1109/JSEN.2019.2916861
65 A.V. Saetchnikov,, E.A. Tcherniavskaia,, V. Saetchnikov,, A. Ostendorf,: Design and application of distributed microresonator-based systems for biochemical sensing. Opt. Sens. Detect. VI. SPIE 11354, 321–326 (2020)
https://doi.org/10.1117/12.2555391
66 A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, and A. Ostendorf,: Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. (2020)
https://doi.org/10.29026/oea.2020.200048
67 S. Shah,, C.N. Yu,, M. Zheng,, H. Kim,, M.S. Eggleston,: Microparticle-based biochemical sensing using optical coherence tomography and deep learning. ACS Nano 15(6), 9764–9774 (2021)
https://doi.org/10.1021/acsnano.1c00497
68 X. Tian,, L. Li,, S.X. Chew,, G. Gunawan,, L. Nguyen,, X. Yi,: Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor. J. Light-wave Technol. 39(24), 7646–7655 (2021)
https://doi.org/10.1109/JLT.2021.3095336
69 Y. Liu,, Z. Jing,, Q. Liu,, A. Li,, A. Lee,, Y. Cheung,, Y. Zhang,, W. Peng,: All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration. Opt. Express 29(15), 23953–23966 (2021)
https://doi.org/10.1364/OE.432943
70 D. Yang,, H. Tian,, Y. Ji,: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19(21), 20023–20034 (2011)
https://doi.org/10.1364/OE.19.020023
71 D. Yang,, H. Tian,, Y. Ji,: Nanoscale low crosstalk photonic crystal integrated sensor array. IEEE Photonics J. 6(1), 1–7 (2014)
https://doi.org/10.1109/JPHOT.2014.2302805
72 V. Kavungal,, G. Farrell,, Q. Wu,, A.K. Mallik,, C. Shen,, Y. Semenova,: Packaged inline cascaded optical micro-resonators for multi-parameter sensing. Opt. Fiber Technol. Fiber Technol. 50, 50–54 (2019)
https://doi.org/10.1016/j.yofte.2019.02.012
73 A.K. Mallik,, G. Farrell,, M. Ramakrishnan,, V. Kavungal,, D. Liu,, Q. Wu,, Y. Semenova,: Whispering gallery mode micro resonators for multi-parameter sensing applications. Opt. Express 26(24), 31829–31838 (2018)
https://doi.org/10.1364/OE.26.031829
74 C. Zhang,, S. Fu,, M. Tang,, D. Liu,: Parallel Fabry-Perot inter-ferometers fabricated on multicore-fiber for temperature and strain discriminative sensing. Opt. Express 28(3), 3190–3199 (2020)
https://doi.org/10.1364/OE.384922
75 Z. Ma,, J. Chen,, H. Wei,, L. Zhang,, Z. Wang,, Z. Chen,, F. Pang,, T. Wang,: Compound Fabry-Pérot interferometer for simultaneous high-pressure and high-temperature measurement. Opt. Express 29(15), 24289–24299 (2021)
https://doi.org/10.1364/OE.425811
76 L. Ye,, X. Liu,, D. Pei,, J. Peng,, S. Liu,, K. Guo,, X. Li,, X. Chen,, X. Zhang,, D. Yang,: Simultaneous detection of relative humidity and temperature based on silicon on-chip cascaded photonic crystal nanobeam cavities. Crystals (Basel) 11(12), 1559 (2021).
https://doi.org/10.3390/cryst11121559
77 J. Wang,, S.X. Chew,, S. Song,, L. Li,, L. Nguyen,, X. Yi,: Onchip simultaneous measurement of humidity and temperature using cascaded photonic crystal microring resonators with error correction. Opt. Express 30(20), 35608–35623 (2022)
https://doi.org/10.1364/OE.466362
78 L. Yi,, C. Li,: Light enhanced absorption of graphene based on parity-time symmetry structure. Faguang Xuebao 43(1), 119–128 (2022)
https://doi.org/10.37188/CJL.20210322
79 T. Tan,, Z. Yuan,, H. Zhang,, G. Yan,, S. Zhou,, N. An,, B. Peng,, G. Soavi,, Y. Rao,, B. Yao,: Multispecies and individual gas molecule detection using Stokes solitons in a graphene overmodal microresonator. Nat. Commun.Commun. 12(1), 6716 (2021)
https://doi.org/10.1038/s41467-021-26740-8
80 Y. Guo,, Z. Li,, N. An,, Y. Guo,, Y. Wang,, Y. Yuan,, H. Zhang,, T. Tan,, C. Wu,, B. Peng,, G. Soavi,, Y. Rao,, B. Yao,: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), 2207777 (2022)
https://doi.org/10.1002/adma.202207777
81 Y. Le Cun,, Y. Bengio,, G. Hinton,: Deep learning. Nature 521(7553), 436–444 (2015)
https://doi.org/10.1038/nature14539
82 M.I. Jordan,, T.M. Mitchell,: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
https://doi.org/10.1126/science.aaa8415
83 Z. Li,, H. Zhang,, B.T.T. Nguyen,, S. Luo,, P.Y. Liu,, J. Zou,, Y. Shi,, H. Cai,, Z. Yang,, Y. Jin,, Y. Hao,, Y. Zhang,, A.Q. Liu,: Smart ring resonator-based sensor for multicomponent chemical analysis via machine learning. Photon. Res. 9(2), B38–B44 (2021)
https://doi.org/10.1364/PRJ.411825
84 C.S. Ho,, N. Jean,, C.A. Hogan,, L. Blackmon,, S.S. Jeffrey,, M. Holodniy,, N. Banaei,, A.A.E. Saleh,, S. Ermon,, J. Dionne,: Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun.Commun. 10(1), 4927 (2019)
https://doi.org/10.1038/s41467-019-12898-9
85 M.S. Djurhuus,, S. Werzinger,, B. Schmauss,, A.T. Clausen,, D. Zibar,: Machine learning assisted fiber Bragg grating-based temperature sensing. IEEE Photonics Technol. Lett. 31(12), 939–942 (2019)
https://doi.org/10.1109/LPT.2019.2913992
86 D. Hu,, C.L. Zou,, H. Ren,, J. Lu,, Z. Le,, Y. Qin,, S. Guo,, C. Dong,, W. Hu,: Multi-parameter sensing in a multimode self-interference micro-ring resonator by machine learning. Sensors (Basel) 20(3), 709 (2020)
https://doi.org/10.3390/s20030709
87 Y. Zhang,, J. Lu,, Z. Le,, C.H. Dong,, H. Zheng,, Y. Qin,, P. Yu,, W. Hu,, C.L. Zou,, H. Ren,: Proposal of unsupervised gas classification by multimode microresonator. IEEE Photonics J. 13(2), 1–11 (2021)
https://doi.org/10.1109/JPHOT.2021.3069582
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed