Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (3) : 30    https://doi.org/10.1007/s12200-023-00087-y
RESEARCH ARTICLE
Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality
Tao Wang1, Bo Ren1, Can Li1(), Kun Guo1, Jinyong Leng1,2,3, Pu Zhou1()
1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
3. Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
 Download: PDF(1906 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, a high-energy and high peak power chirped pulse amplification system with near diffraction-limited beam quality based on tapered confined-doped fiber (TCF) is experimentally demonstrated. The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250 μm at the thin end and 56/400 μm at the thick end. With a backward-pumping configuration, a maximum single pulse energy of 177.9 μJ at a repetition rate of 504 kHz is realized, corresponding to an average power of 89.7 W. Through partially compensating for the accumulated nonlinear phase during the amplification process via adjusting the high order dispersion of the stretching chirped fiber Bragg grating, the duration of the amplified pulse is compressed to 401 fs with a pulse energy of 126.3 μJ and a peak power of 207 MW, which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fiber laser. At the highest energy, the polarization extinction ratio and the M2 factor were respectively measured to be ∼ 19 dB and 1.20. In addition, the corresponding intensity noise properties as well as the short- and long-term stability were also examined, verifying a stable operation of the system. It is believed that the demonstrated laser source could find important applications in, for example, advanced manufacturing and photomedicine.

Keywords High-energy laser      Femtosecond laser      Tapered fiber      Fiber laser      Chirped pulse amplifier     
Corresponding Author(s): Can Li,Pu Zhou   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 08 November 2023
 Cite this article:   
Tao Wang,Bo Ren,Can Li, et al. Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality[J]. Front. Optoelectron., 2023, 16(3): 30.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00087-y
https://academic.hep.com.cn/foe/EN/Y2023/V16/I3/30
1 S. Hädrich,, A. Klenke,, J. Rothhardt,, M. Krebs,, A. Hoffmann,, O. Pronin,, V. Pervak,, J. Limpert,, A. Tünnermann,: High photon flux table-top coherent extreme-ultraviolet source. Nat. Photonics 8(10), 779–783 (2014)
https://doi.org/10.1038/nphoton.2014.214
2 M. Malinauskas,, A. Žukauskas,, S. Hasegawa,, Y. Hayasaki,, V. Mizeikis,, R. Buividas,, S. Juodkazis,: Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016)
https://doi.org/10.1038/lsa.2016.133
3 C. Kerse,, H. Kalaycıoğlu,, P. Elahi,, B. Çetin,, D.K. Kesim,, Ö. Akçaalan,, S. Yavaş,, M.D. Aşık,, B. Öktem,, H. Hoogland,, R. Holzwarth,, F.Ö. Ilday,: Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537(7618), 84–88 (2016)
https://doi.org/10.1038/nature18619
4 Z. Chang,, L. Fang,, V. Fedorov,, C. Geiger,, S. Ghimire,, C. Heide,, N. Ishii,, J. Itatani,, C. Joshi,, Y. Kobayashi,, P. Kumar,, A. Marra,, S. Mirov,, I. Petrushina,, M. Polyanskiy,, D.A. Reis,, S. Tochitsky,, S. Vasilyev,, L. Wang,, Y. Wu,, F. Zhou,: Intense infrared lasers for strong-field science. Adv. Opt. Photonics 14(4), 652–782 (2022)
https://doi.org/10.1364/AOP.454797
5 Y. Wang,, H. Chi,, C. Baumgarten,, K. Dehne,, A.R. Meadows,, A. Davenport,, G. Murray,, B.A. Reagan,, C.S. Menoni,, J.J. Rocca,: 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 45(24), 6615–6618 (2020)
https://doi.org/10.1364/OL.413129
6 W. Wang,, H. Wu,, C. Liu,, B. Sun,, H. Liang,: Multigigawatt 50 fs Yb:CALGO regenerative amplifier system with 11 W average power and mid-infrared generation. Photon. Res. 9(8), 1439–1445 (2021)
https://doi.org/10.1364/PRJ.425149
7 M.N. Zervas,, C.A. Codemard,: High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014)
https://doi.org/10.1109/JSTQE.2014.2321279
8 J. Zhou,, W. Pan,, W. Qi,, X. Cao,, Z. Cheng,, Y. Feng,: Ultrafast Raman fiber laser: a review and prospect. PhotoniX. 3(1), 18 (2022)
https://doi.org/10.1186/s43074-022-00064-2
9 G. Chang,, Z. Wei,: Ultrafast fiber lasers: an expanding versatile toolbox. iScience. 23(5), 101101 (2020)
https://doi.org/10.1016/j.isci.2020.101101
10 J. Zuo,, X. Lin,: High-power laser systems. Laser Photonics Rev. 16(5), 2100741 (2022)
https://doi.org/10.1002/lpor.202100741
11 B. Wang,, Z. Peng,, Z. Cheng,, Y.A.N. Xu,, P. Wang,: High-power 0.4-mJ picosecond CPA system based on an extra-large-modearea triple-clad fiber. Opt. Express 30(23), 41171–41180 (2022)
https://doi.org/10.1364/OE.469197
12 Y. Zhang,, J. Wang,, H. Teng,, S. Fang,, J. Wang,, G. Chang,, Z. Wei,: Double-pass pre-chirp managed amplification with high gain and high average power. Opt. Lett. 46(13), 3115–3118 (2021)
https://doi.org/10.1364/OL.428066
13 E. Shestaev,, D. Hoff,, A.M. Sayler,, A. Klenke,, S. Hädrich,, F. Just,, T. Eidam,, P. Jójárt,, Z. Várallyay,, K. Osvay,, G.G. Paulus,, A. Tünnermann,, J. Limpert,: High-power ytterbium-doped fiber laser delivering few-cycle, carrier-envelope phase-stable 100 μJ pulses at 100 kHz. Opt. Lett. 45(1), 97–100 (2020)
https://doi.org/10.1364/OL.45.000097
14 T. Wang,, C. Li,, B. Ren,, K. Guo,, J. Wu,, J. Leng,, P. Zhou,: High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier. High Power Laser Sci. Eng. 11, e25 (2023)
https://doi.org/10.1017/hpl.2023.12
15 J. Limpert,, A. Liem,, M. Reich,, T. Schreiber,, S. Nolte,, H. Zellmer,, A. Tünnermann,, J. Broeng,, A. Petersson,, C. Jakobsen,: Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)
https://doi.org/10.1364/OPEX.12.001313
16 M.S. Habib,, J.E. Antonio-Lopez,, C. Markos,, A. Schülzgen,, R. Amezcua-Correa,: Single-mode, low loss hollow-core antiresonant fiber designs. Opt. Express 27(4), 3824–3836 (2019)
https://doi.org/10.1364/OE.27.003824
17 J. Limpert,, F. Stutzki,, F. Jansen,, H.J. Otto,, T. Eidam,, C. Jauregui,, A. Tünnermann,: Yb-doped large-pitch fibres: effective singlemode operation based on higher-order mode delocalisation. Light Sci. Appl. 1(4), e8 (2012)
https://doi.org/10.1038/lsa.2012.8
18 A. Steinkopff,, C. Jauregui,, F. Stutzki,, J. Nold,, C. Hupel,, N. Haarlammert,, J. Bierlich,, A. Tünnermann,, J. Limpert,: Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter. Opt. Lett. 44(3), 650–653 (2019)
https://doi.org/10.1364/OL.44.000650
19 X. Ma,, C. Zhu,, I.N. Hu,, A. Kaplan,, A. Galvanauskas,: Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores. Opt. Express 22(8), 9206–9219 (2014)
https://doi.org/10.1364/OE.22.009206
20 J. Želudevičius,, R. Danilevičius,, K. Viskontas,, N. Rusteika,, K. Regelskis,: Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber. Opt. Express 21(5), 5338–5345 (2013)
https://doi.org/10.1364/OE.21.005338
21 T. Eidam,, J. Rothhardt,, F. Stutzki,, F. Jansen,, S. Hädrich,, H. Carstens,, C. Jauregui,, J. Limpert,, A. Tünnermann,: Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19(1), 255–260 (2011)
https://doi.org/10.1364/OE.19.000255
22 V. Filippov,, Y. Chamorovskii,, J. Kerttula,, K. Golant,, M. Pessa,, O.G. Okhotnikov,: Double clad tapered fiber for high power applications. Opt. Express 16(3), 1929–1944 (2008)
https://doi.org/10.1364/OE.16.001929
23 J. Kerttula,, V. Filippov,, Y. Chamorovskii,, V. Ustimchik,, K. Golant,, O.G. Okhotnikov,: Principles and performance of tapered fiber lasers: from uniform to flared geometry. Appl. Opt. 51(29), 7025–7038 (2012)
https://doi.org/10.1364/AO.51.007025
24 L. Huang,, P. Ma,, R. Su,, W. Lai,, Y. Ma,, P. Zhou,: Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform- limited nanosecond fiber laser. Opt. Express 29(2), 761–782 (2021)
https://doi.org/10.1364/OE.414788
25 B. Ren,, C. Li,, T. Wang,, K. Guo,, J. Wu,, R. Su,, P. Ma,, P. Zhou,: Generation of ultrafast laser with 11 MW peak power from a gain-managed nonlinear tapered fiber amplifier. Opt. Laser Technol. 160, 109081 (2023)
https://doi.org/10.1016/j.optlastec.2022.109081
26 X. Chen,, T. Yao,, L. Huang,, Y. An,, H. Wu,, Z. Pan,, P. Zhou,: Functional fibers and functional fiber-based components for high-power lasers. Adv. Fiber Mater. 5(1), 59–106 (2023)
https://doi.org/10.1007/s42765-022-00219-7
27 W. Lai,, P. Ma,, W. Liu,, L. Huang,, C. Li,, Y. Ma,, P. Zhou,: 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Opt. Express 28(14), 20908–20919 (2020)
https://doi.org/10.1364/OE.395619
28 L. Huang,, W. Lai,, P. Ma,, J. Wang,, R. Su,, Y. Ma,, C. Li,, D. Zhi,, P. Zhou,: Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser. Opt. Lett. 45(14), 4001–4004 (2020)
https://doi.org/10.1364/OL.393051
29 V. Ustimchik,, Y. Chamorovskii,, V. Filippov,: High average power (500 W/50 ps) and high peak power (3.2 MW/50 ps) picosecond pulsed MOPA system with tapered double-clad ytterbium fiber. SPIE LASE (SPIE). 11981 (2022)
https://doi.org/10.1117/12.2610217
30 M. Leich,, A. Kalide,, T. Eschrich,, M. Lorenz,, A. Lorenz,, K. Wondraczek,, D. Schönfeld,, A. Langner,, G. Schötz,, M. Jäger,: 2 MW peak power generation in fluorine co-doped Yb fiber prepared by powder-sinter technology. Opt. Lett. 45(16), 4404–4407 (2020)
https://doi.org/10.1364/OL.394793
31 K. Bobkov,, A. Levchenko,, T. Kashaykina,, S. Aleshkina,, M. Bubnov,, D. Lipatov,, A. Laptev,, A. Guryanov,, Y. Leventoux,, G. Granger,, V. Couderc,, S. Février,, M. Likhachev,: Scaling of average power in sub-MW peak power Yb-doped tapered fiber picosecond pulse amplifiers. Opt. Express 29(2), 1722–1735 (2021)
https://doi.org/10.1364/OE.413528
32 A. Petrov,, M. Odnoblyudov,, R. Gumenyuk,, L. Minyonok,, A. Chumachenko,, V. Filippov,: Picosecond Yb-doped tapered fiber laser system with 1.26 MW peak power and 200 W average output power. Sci. Rep. 10(1), 17781 (2020)
https://doi.org/10.1038/s41598-020-74895-z
33 W. Li,, P. Ma,, W. Lai,, J. Song,, T. Wang,, B. Ren,, W. Liu,, P. Zhou,, L. Si,: Tapered active fiber simultaneously enabled 141 W high average and 1.3 MW high peak power via all-fiber and polarization-maintained picosecond amplifier. Opt. Laser Technol. 152, 108166 (2022)
https://doi.org/10.1016/j.optlastec.2022.108166
34 V. Roy,, P. Grenier,, L. Desbiens,, S. Deshaies,, M. Deladurantaye,, P. Paradis,, M. Boivin,, B. Labranche,, A. Proulx,, Y. Taillon,: High-power/energy large mode area tapered fiber amplifiers. In: Proceedings of SPIE, 1166509 (2021)
https://doi.org/10.1117/12.2584194
35 M.Y. Koptev,, E.A. Anashkina,, K.K. Bobkov,, M.E. Likhachev,, A.E. Levchenko,, S.S. Aleshkina,, S.L. Semjonov,, A.N. Denisov,, M.M. Bubnov,, D.S. Lipatov,, A.Y. Laptev,, A.N. Gur’yanov,, A.V. Andrianov,, S.V. Muravyev,, A.V. Kim,: Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses. Quantum Electron. 45(5), 443–450 (2015)
https://doi.org/10.1070/QE2015v045n05ABEH015762
36 K. Bobkov,, A. Andrianov,, M. Koptev,, S. Muravyev,, A. Levchenko,, V. Velmiskin,, S. Aleshkina,, S. Semjonov,, D. Lipatov,, A. Guryanov,, A. Kim,, M. Likhachev,: Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier. Opt. Express 25(22), 26958–26972 (2017)
https://doi.org/10.1364/OE.25.026958
37 K. Guesmi,, A. Mugnier,, G. Canat,, C. Canal,, P. Maine,: Simple design for high energy femtosecond tapered double clad fiber amplifier. In: Proceedings of SPIE, 1166517(2021)
https://doi.org/10.1117/12.2578295
38 X. Cao,, Q. Li,, F. Li,, H. Zhao,, W. Zhao,, Y. Wang,, D. Li,, Y. Yang,, W. Wen,, J. Si,: Femtosecond Yb-doped tapered fiber pulse amplifiers with peak power of over hundred megawatts. Opt. Express 31(4), 5507–5518 (2023)
https://doi.org/10.1364/OE.480637
39 B. Gouhier,, C. Dixneuf,, A. Hilico,, G. Guiraud,, N. Traynor,, G. Santarelli,: Low intensity noise high-power tunable fiber-based laser around 1007 nm. J. Lightwave Technol. 37(14), 3539–3543 (2019)
https://doi.org/10.1109/JLT.2019.2917651
40 Y. Tao,, M. Jiang,, L. Liu,, C. Li,, P. Zhou,, Z. Jiang,: Over 250 W low noise core-pumped single-frequency all-fiber amplifier. Opt. Express 31(6), 10586–10595 (2023)
https://doi.org/10.1364/OE.472487
41 D. Nguyen,, M.U. Piracha,, P.J. Delfyett,: Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power. Opt. Lett. 37(23), 4913–4915 (2012)
https://doi.org/10.1364/OL.37.004913
[1] Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Jianquan Yao. Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation[J]. Front. Optoelectron., 2023, 16(4): 33-.
[2] Yuting Ouyang, Jiayu Zhang, Wanggen Sun, Mengxiao Li, Tao Chen, Haikun Zhang, Wenjing Tang, Wei Xia. Picosecond dissipative soliton generation from an ytterbium-doped fiber laser based on a BP/SnSe2-PVA mixture saturable absorber[J]. Front. Optoelectron., 2023, 16(3): 19-.
[3] Baohao Xu, Zhiyuan Jin, Lie Shi, Huanian Zhang, Qi Liu, Peng Qin, Kai Jiang, Jing Wang, Wenjing Tang, Wei Xia. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets[J]. Front. Optoelectron., 2023, 16(2): 13-.
[4] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[5] Rawan S. M. Soboh, Ahmed H. H. Al-Masoodi, Fuad N. A. Erman, Abtisam H. H. Al-Masoodi, Bilal Nizamani, Hamzah Arof, Retna Apsari, Sulaiman Wadi Harun. Mode-locked ytterbium-doped fiber laser with zinc phthalocyanine thin film saturable absorber[J]. Front. Optoelectron., 2022, 15(2): 28-.
[6] Peiyan Li, Shaojie Liu, Xinhou Chen, Chunyan Geng, Xiaojun Wu. Spintronic terahertz emission with manipulated polarization (STEMP)[J]. Front. Optoelectron., 2022, 15(1): 12-.
[7] Manshi WANG, Zhiqiang YU, Nan ZHANG, Weiwei LIU. Drilling high aspect ratio holes by femtosecond laser filament with aberrations[J]. Front. Optoelectron., 2021, 14(4): 522-528.
[8] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[9] Xuepeng ZHAN, Huailiang XU, Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Front. Optoelectron., 2016, 9(3): 420-427.
[10] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
[11] Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
[12] Xiaoyan SUN, Peng HUANG, Jiefeng ZHAO, Li WEI, Nan ZHANG, Dengfeng KUANG, Xiaonong ZHU. Characteristic control of long period fiber grating (LPFG) fabricated by infrared femtosecond laser[J]. Front Optoelec, 2012, 5(3): 334-340.
[13] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[14] Jie BI. Angular feature of conical emission in an isotropic amorphous medium pumped by femtosecond pulses[J]. Front Optoelec Chin, 2011, 4(4): 407-410.
[15] Jiaqi ZHAO, Zhi WANG, Yange LIU, Bo LIU, . Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber[J]. Front. Optoelectron., 2010, 3(3): 283-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed