|
|
|
A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems |
Xiaoxiao Wang1, Ruizhe Gu1, Yandong Li1, Huixin Qi1, Xiaoyong Hu1,2,3,4( ), Xingyuan Wang5( ), Qihuang Gong1,2,3,4 |
1. State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China 2. Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China 3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 4. Hefei National Laboratory, Hefei 230088, China 5. College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
|
|
Abstract Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su–Schrieffer–Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.
|
| Keywords
Nonreciprocal
Bilayer
Interlayer coupling
Topological photonics
|
|
Corresponding Author(s):
Xiaoyong Hu,Xingyuan Wang
|
|
Issue Date: 13 December 2023
|
|
| 1 |
K. Zhang,, X. Zhang,, L. Wang,, D. Zhao,, F. Wu,, Y. Yao,, M. Xia,, Y. Guo,: Observation of topological properties of non-Hermitian crystal systems with diversified coupled resonators chains. J. Appl. Phys. 130, 064502 (2021)
https://doi.org/10.1063/5.0058245
|
| 2 |
Y.T. Ao,, X.Y. Hu,, Y.L. You,, C.C. Lu,, Y.L. Fu,, X.Y. Wang,, Q.H. Gong,: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)
https://doi.org/10.1103/PhysRevLett.125.013902
|
| 3 |
S. Weidemann,, M. Kremer,, T. Helbig,, T. Hofmann,, A. Stegmaier,, M. Greiter,, R. Thomale,, A. Szameit,: Topological funneling of light. Science 368(6488), 311–314 (2020)
https://doi.org/10.1126/science.aaz8727
|
| 4 |
C.H. Lee,, L.H. Li,, J.B. Gong,: Hybrid higher-order skin-top-ological modes in nonreciprocal systems. Phys. Rev. Lett. 123, 016805 (2019)
https://doi.org/10.1103/PhysRevLett.123.016805
|
| 5 |
E.J. Bergholtz,, J.C. Budich,, F.K. Kunst,: Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93(1), 015005 (2021)
https://doi.org/10.1103/RevModPhys.93.015005
|
| 6 |
X.P. Zhou,, S.K. Gupta,, Z. Huang,, Z.D. Yan,, P. Zhan,, Z. Chen,, M.H. Lu,, Z.L. Wang,: Optical lattices with higher-order exceptional points by non-Hermitian coupling. Appl. Phys. Lett. 113, 101108 (2018)
https://doi.org/10.1063/1.5043279
|
| 7 |
D. Leykam,, S. Flach,, Y.D. Chong,: Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96(6), 064305 (2017)
https://doi.org/10.1103/PhysRevB.96.064305
|
| 8 |
D. Jalas,, A. Petrov,, M. Eich,, W. Freude,, S.H. Fan,, Z.F. Yu,, R. Baets,, M. Popovic,, A. Melloni,, J.D. Joannopoulos,, M. Vanwolleghem,, C.R. Doerr,, H. Renner,: What is—and what is not—an optical isolator. Nat. Photonics 7(8), 579–582 (2013)
https://doi.org/10.1038/nphoton.2013.185
|
| 9 |
V.S. Asadchy,, M.S. Mirmoosa,, A. Diaz-Rubio,, S.H. Fan,, S.A. Tretyakov,: Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108(10), 1684–1727 (2020)
https://doi.org/10.1109/JPROC.2020.3012381
|
| 10 |
Z. Wang,, Y.D. Chong,, J.D. Joannopoulos,, M. Soljacic,: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)
https://doi.org/10.1038/nature08293
|
| 11 |
K.Y. Bliokh,, D. Smirnova,, F. Nori,: Quantum spin Hall effect of light. Science 348(6242), 1448–1451 (2015)
https://doi.org/10.1126/science.aaa9519
|
| 12 |
X.J. Zhang,, T. Zhang,, M.H. Lu,, Y.F. Chen,: A review on non-Hermitian skin effect. Adv. Phys. X 7:1, 2109431, (2022).
https://doi.org/10.1080/23746149.2022.2109431
|
| 13 |
Y.L. Song,, W.W. Liu,, L.Z. Zheng,, Y.C. Zhang,, B. Wang,, P.X. Lu,: Two-dimensional non-Hermitian Skin Effect in a Synthetic Photonic Lattice. Phys. Rev. Appl. 14, 064076 (2020)
https://doi.org/10.1103/PhysRevApplied.14.064076
|
| 14 |
F.K. Kunst,, E. Edvardsson,, J.C. Budich,, E.J. Bergholtz,: Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121(2), 026808 (2018)
https://doi.org/10.1103/PhysRevLett.121.026808
|
| 15 |
F. Song,, S.Y. Yao,, Z. Wang,: Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019)
https://doi.org/10.1103/PhysRevLett.123.246801
|
| 16 |
C. Caloz,, A. Alu,, S. Tretyakov,, D. Sounas,, K. Achouri,, Z.L. Deck-Leger,: Electromagnetic nonreciprocity. Phys. Rev. Appl. 10(4), 047001 (2018)
https://doi.org/10.1103/PhysRevApplied.10.047001
|
| 17 |
B. Peng,, S.K. Ozdemir,, F.C. Lei,, F. Monifi,, M. Gianfreda,, G.L. Long,, S.H. Fan,, F. Nori,, C.M. Bender,, L. Yang,: Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394–398 (2014)
https://doi.org/10.1038/nphys2927
|
| 18 |
X.Y. Huang,, C.C. Lu,, C. Liang,, H.G. Tao,, Y.C. Liu,: Loss-induced nonreciprocity. Light Sci. Appl. 10, 30 (2021)
https://doi.org/10.1038/s41377-021-00464-2
|
| 19 |
C. Shen,, X.H. Zhu,, J.F. Li,, S.A. Cummer,: Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019)
https://doi.org/10.1103/PhysRevB.100.054302
|
| 20 |
Z.F. Yu,, S.H. Fan,: Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009)
https://doi.org/10.1038/nphoton.2008.273
|
| 21 |
D.L. Sounas,, C. Caloz,, A. Alu,: Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4(1), 2407 (2013)
https://doi.org/10.1038/ncomms3407
|
| 22 |
C. Yuce,: Anomalous features of non-Hermitian topological states. Ann. Phys. 415, 168098 (2020)
https://doi.org/10.1016/j.aop.2020.168098
|
| 23 |
W. Wang,, X. Wang,, G. Ma,: Non-Hermitian morphing of topological modes. Nature 608(7921), 50–55 (2022)
https://doi.org/10.1038/s41586-022-04929-1
|
| 24 |
X. Zhang,, Y. Tian,, J.H. Jiang,, M.H. Lu,, Y.F. Chen,: Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12(1), 5377 (2021)
https://doi.org/10.1038/s41467-021-25716-y
|
| 25 |
L. Qi,, G.L. Wang,, S. Liu,, S. Zhang,, H.F. Wang,: Robust interface-state laser in non-Hermitian microresonator arrays. Phys. Rev. Appl. 13(6), 064015 (2020)
https://doi.org/10.1103/PhysRevApplied.13.064015
|
| 26 |
K. Wang,, A. Dutt,, C.C. Wojcik,, S. Fan,: Topological complexenergy braiding of non-Hermitian bands. Nature 598(7879), 59–64 (2021)
https://doi.org/10.1038/s41586-021-03848-x
|
| 27 |
Z. Gao,, X. Qiao,, M. Pan,, S. Wu,, J. Yim,, K. Chen,, B. Midya,, L. Ge,, L. Feng,: Two-dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130(26), 263801 (2023)
https://doi.org/10.1103/PhysRevLett.130.263801
|
| 28 |
W.P. Su,, J.R. Schrieffer,, A.J. Heeger,: Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698–1701 (1979)
https://doi.org/10.1103/PhysRevLett.42.1698
|
| 29 |
S. Weimann,, M. Kremer,, Y. Plotnik,, Y. Lumer,, S. Nolte,, K.G. Makris,, M. Segev,, M.C. Rechtsman,, A. Szameit,: Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16(4), 433–438 (2017)
https://doi.org/10.1038/nmat4811
|
| 30 |
W.G. Song,, W.Z. Sun,, C. Chen,, Q.H. Song,, S.M. Xiao,, S.N. Zhu,, T. Li,: Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019)
https://doi.org/10.1103/PhysRevLett.123.165701
|
| 31 |
H.C. Wu,, L. Jin,, Z. Song,: Topology of an anti-parity-time symmetric non-Hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 103, 235110 (2021)
https://doi.org/10.1103/PhysRevB.103.235110
|
| 32 |
S.D. Liang,, G.Y. Huang,: Topological invariance and global Berry phase in non-Hermitian systems. Phys. Rev. A 87(1), 012118 (2013)
https://doi.org/10.1103/PhysRevA.87.012118
|
| 33 |
K. Takata,, M. Notomi,: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)
https://doi.org/10.1103/PhysRevLett.121.213902
|
| 34 |
Z. Xing,, Y. Li,, Y. Ao,, X. Hu,: Winding number and bulk-boundary correspondence in a one-dimensional non-Hermitian photonic lattice. Phys. Rev. A (Coll. Park) 107(1), 013515 (2023)
https://doi.org/10.1103/PhysRevA.107.013515
|
| 35 |
C.M. Othon,, A. Laracuente,, H.D. Ladouceur,, B.R. Ringeisen,: Sub-micron parallel laser direct-write. Appl. Surf. Sci. 255(5), 3407–3413 (2008)
https://doi.org/10.1016/j.apsusc.2008.09.058
|
| 36 |
E. Lustig,, L.J. Maczewsky,, J. Beck,, T. Biesenthal,, M. Heinrich,, Z. Yang,, Y. Plotnik,, A. Szameit,, M. Segev,: Photonic topological insulator induced by a dislocation in three dimensions. Nature 609(7929), 931–935 (2022)
https://doi.org/10.1038/s41586-022-05129-7
|
| 37 |
L.J. Maczewsky,, M. Heinrich,, M. Kremer,, S.K. Ivanov,, M. Ehrhardt,, F. Martinez,, Y.V. Kartashov,, V.V. Konotop,, L. Torner,, D. Bauer,, A. Szameit,: Nonlinearity-induced photonic topological insulator. Science 370(6517), 701–704 (2020)
https://doi.org/10.1126/science.abd2033
|
| 38 |
F. Yu,, X.L. Zhang,, Z.N. Tian,, Q.D. Chen,, H.B. Sun,: General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127(25), 253901 (2021)
https://doi.org/10.1103/PhysRevLett.127.253901
|
| 39 |
L.H. Wu,, X. Hu,: Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015)
https://doi.org/10.1103/PhysRevLett.114.223901
|
| 40 |
W.J. Liu,, Z.R. Ji,, Y.H. Wang,, G. Modi,, M. Hwang,, B.Y. Zheng,, V.J. Sorger,, A.L. Pan,, R. Agarwal,: Generation of helical topological exciton-polaritons. Science 370(6516), 600–604 (2020)
https://doi.org/10.1126/science.abc4975
|
| 41 |
H. Zhao,, X.D. Qiao,, T.W. Wu,, B. Midya,, S. Longhi,, L. Feng,: Non-Hermitian topological light steering. Science 365(6458), 1163–1166 (2019)
https://doi.org/10.1126/science.aay1064
|
| 42 |
Y.D. Li,, C.X. Fan,, X.Y. Hu,, Y.T. Ao,, C.C. Lu,, C.T. Chan,, D.M. Kennes,, Q.H. Gong,: Effective hamiltonian for photonic topological insulator with non-Hermitian domain walls. Phys. Rev. Lett. 129, 053903 (2022)
https://doi.org/10.1103/PhysRevLett.129.053903
|
| 43 |
X.X. Wang,, Y.D. Li,, X.Y. Hu,, R.Z. Gu,, Y.T. Ao,, P. Jiang,, Q.H. Gong,: Non-Hermitian high-quality-factor topological photonic crystal cavity. Phys. Rev. A (Coll Park) 105(2), 023531 (2022)
https://doi.org/10.1103/PhysRevA.105.023531
|
| 44 |
X.D. Chen,, X.T. He,, J.W. Dong,: All-dielectric layered photonic topological insulators. Laser Photonics Rev. 13, 1900091 (2019)
https://doi.org/10.1002/lpor.201900091
|
| 45 |
Y.T. Yang,, Y.F. Xu,, T. Xu,, H.X. Wang,, J.H. Jiang,, X. Hu,, Z.H. Hang,: Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018)
https://doi.org/10.1103/PhysRevLett.120.217401
|
| 46 |
X.D. Chen,, W.M. Deng,, F.L. Shi,, F.L. Zhao,, M. Chen,, J.W. Dong,: Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122(23), 233902 (2019).
https://doi.org/10.1103/PhysRevLett.122.233902
|
| 47 |
Y. Liu,, S. Leung,, F.F. Li,, Z.K. Lin,, X. Tao,, Y. Poo,, J.H. Jiang,: Bulk–disclination correspondence in topological crystalline insulators. Nature 589(7842), 381–385 (2021)
https://doi.org/10.1038/s41586-020-03125-3
|
| 48 |
A. Guo,, G.J. Salamo,, D. Duchesne,, R. Morandotti,, M. Volatier-Ravat,, V. Aimez,, G.A. Siviloglou,, D.N. Christodoulides,: Observation of P T-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103(9), 093902 (2009).
https://doi.org/10.1103/PhysRevLett.103.093902
|
| 49 |
W. Zhu,, J. Gong,: Photonic corner skin modes in non-Hermitian photonic crystals. Phys. Rev. B 108(3), 035406 (2023)
https://doi.org/10.1103/PhysRevB.108.035406
|
| 50 |
N.R. Bernier,, L.D. Tóth,, A. Koottandavida,, M.A. Ioannou,, D. Malz,, A. Nunnenkamp,, A.K. Feofanov,, T.J. Kippenberg,: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8(1), 604 (2017)
https://doi.org/10.1038/s41467-017-00447-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|