Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (1) : 1    https://doi.org/10.1007/s12200-024-00105-7
High power tunable Raman fiber laser at 1.2 µm waveband
Yang Zhang1, Jiangming Xu1(), Junrui Liang1, Jun Ye1,2,3, Sicheng Li1, Xiaoya Ma1, Zhiyong Pan1,2,3, Jinyong Leng1,2,3, Pu Zhou1()
1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
3. Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
 Download: PDF(2429 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated. This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.

Keywords Phosphosilicate fiber      Raman fiber laser      1.2 µm waveband      Wavelength tunable     
Corresponding Author(s): Jiangming Xu,Pu Zhou   
Issue Date: 24 January 2024
 Cite this article:   
Yang Zhang,Jiangming Xu,Junrui Liang, et al. High power tunable Raman fiber laser at 1.2 µm waveband[J]. Front. Optoelectron., 2024, 17(1): 1.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00105-7
https://academic.hep.com.cn/foe/EN/Y2024/V17/I1/1
1 S.A. Engelmann,, A. Zhou,, A.M. Hassan,, M.R. Williamson,, J.W. Jarrett,, E.P. Perillo,, A. Tomar,, D.J. Spence,, T.A. Jones,, A.K. Dunn,: Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. Biomed. Opt. Express 13(4), 1888–1898 (2022)
https://doi.org/10.1364/BOE.448978
2 X. Yang,, L. Zhang,, Y. Feng,, X. Zhu,, R.A. Norwood,, N. Peyghambarian,: Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)
https://doi.org/10.1109/JLT.2016.2599007
3 F. Anquez,, E. Courtade,, A. Sivéry,, P. Suret,, S. Randoux,: A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt. Express 18(22), 22928–22936 (2010)
https://doi.org/10.1364/OE.18.022928
4 E. Poem,, A. Golenchenko,, O. Davidson,, O. Arenfrid,, R. Finkelstein,, O. Firstenberg,: Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express 28(22), 32738–32749 (2020)
https://doi.org/10.1364/OE.404015
5 M. Wanner,, M. Avram,, D. Gagnon,, M.C. Jr. Mihm,, D. Zurakowski,, K. Watanabe,, Z. Tannous,, R.R. Anderson,, D. Manstein,: Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg. Med. 41(6), 401–407 (2009)
https://doi.org/10.1002/lsm.20785
6 R.T. Murray,, A.M. Chandran,, R.A. Battle,, T.H. Runcorn,, P.G. Schunemann,, K.T. Zawilski,, S. Guha,, J.R. Taylor,: Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm. Opt. Lett. 46(9), 2039–2042 (2021)
https://doi.org/10.1364/OL.420959
7 A.M. Chandran,, T.H. Runcorn,, R.T. Murray,, J.R. Taylor,: Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Opt. Lett. 44(24), 6025–6028 (2019)
https://doi.org/10.1364/OL.44.006025
8 X. Yang,, Z. Bai,, D. Chen,, W. Chen,, Y. Feng,, R.P. Mildren,: Widely-tunable single-frequency diamond Raman laser. Opt. Express 29(18), 29449–29457 (2021)
https://doi.org/10.1364/OE.435023
9 H. Wu,, W. Wang,, B. Hu,, Y. Li,, K. Tian,, R. Ma,, C. Li,, J. Liu,, J. Yao,, H. Liang,: Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photon. Res. 11(5), 808–816 (2023)
https://doi.org/10.1364/PRJ.485813
10 S. Mogg,, N. Chitica,, R. Schatz,, M. Hammar,: Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes. Appl. Phys. Lett. 81(13), 2334–2336 (2002)
https://doi.org/10.1063/1.1509478
11 C. Möller,, C. Fuchs,, C. Berger,, A. Ruiz Perez,, M. Koch,, J. Hader,, J.V. Moloney,, S.W. Koch,, W. Stolz,: Type-II vertical-external-cavity surface-emitting laser with Watt level output powers at 1.2 µm. Appl. Phys. Lett. 108(7), 071102 (2016)
https://doi.org/10.1063/1.4942103
12 Y. Liu,, C. Zhu,, Y. Sun,, R.P. Mildren,, Z. Bai,, B. Zhang,, W. Chen,, D. Chen,, M. Li,, X. Yang,, Y. Feng,: High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering. High Power Laser Sci. Eng. 11, e72 (2023)
https://doi.org/10.1017/hpl.2023.67
13 Y. Sun,, M. Li,, O. Kitzler,, R.P. Mildren,, Z. Bai,, H. Zhang,, J. Lu,, Y. Feng,, X. Yang,: Stable high-efficiency continuouswave diamond Raman laser at 1178 nm. Laser Phys. Lett. 19(12), 125001 (2022)
https://doi.org/10.1088/1612-202X/ac9ce2
14 I.D. Vatnik,, D.V. Churkin,, S.A. Babin,, S.K. Turitsyn,: Cascaded random distributed feedback Raman fiber laser operating at 1.2 µm. Opt. Express 19(19), 18486–18494 (2011)
https://doi.org/10.1364/OE.19.018486
15 H. Zhang,, H. Xiao,, P. Zhou,, X. Wang,, X. Xu,: High-power random distributed feedback Raman fiber laser operating at 1.2-µm. Chin. Opt. Lett. 12(Suppl), S21410 (2014)
https://doi.org/10.3788/col201412.s21410
16 S. Antipov,, A. Sabella,, R.J. Williams,, O. Kitzler,, D.J. Spence,, R.P. Mildren,: 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 44(10), 2506–2509 (2019)
https://doi.org/10.1364/OL.44.002506
17 X. Yang,, L. Zhang,, X. Zhu,, Y. Feng,: Wavelength-tunable, dual-wavelength Q-switched Ho3+-doped ZBLAN fiber laser at 12 µm. Appl. Phys. B 124(10), 198 (2018)
https://doi.org/10.1007/s00340-018-7071-1
18 N.K. Thipparapu,, Y. Wang,, S. Wang,, A.A. Umnikov,, P. Barua,, J.K. Sahu,: Bi-doped fiber amplifiers and lasers. Opt. Mater. Express 9(6), 2446–2465 (2019)
https://doi.org/10.1364/OME.9.002446
19 C. Xu,, X. Li,, Y. Shen,, J. Zhang,, S. Jia,, G. Farrell,, S. Wang,, P. Wang,: Laser operation at 1.2 µm in Ho3+-doped ZBYA glass fibers. Opt. Lett. 48(12), 3263–3266 (2023)
https://doi.org/10.1364/OL.489711
20 V.R. Supradeepa,, J.W. Nicholson,: Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers. Opt. Lett. 38(14), 2538–2541 (2013)
https://doi.org/10.1364/OL.38.002538
21 L. Zhang,, J. Dong,, Y. Feng,: High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 1400106 (2018)
https://doi.org/10.1109/JSTQE.2017.2759261
22 H. Wu,, B. Han,, Y. Liu,: Tunable narrowband cascaded random Raman fiber laser. Opt. Express 29(14), 21539–21550 (2021)
https://doi.org/10.1364/OE.430649
23 R. Deheri,, S. Dash,, V.R. Supradeepa,, V. Balaswamy,: Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 47(14), 3499–3502 (2022)
https://doi.org/10.1364/OL.463950
24 M. de Oliveira,, B. Aitken,, H. Eckert,: Structure of P2O5-SiO2 pure network former glasses studied by solid state NMR spectroscopy. J. Phys. Chem. C 122(34), 19807–19815 (2018)
https://doi.org/10.1021/acs.jpcc.8b06055
25 N.S. Shcheblanov,, L. Giacomazzi,, M.E. Povarnitsyn,, S. Kohara,, L. Martin-Samos,, G. Mountjoy,, R.J. Newport,, R.C. Haworth,, N. Richard,, N. Ollier,: Vibrational and structural properties of P2O5 glass: advances from a combined modeling approach. Phys. Rev. B 100(13), 134309 (2019)
https://doi.org/10.1103/PhysRevB.100.134309
26 J. Song,, J. Xu,, Y. Zhang,, J. Ye,, P. Zhou,: Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express 27(16), 23095–23102 (2019)
https://doi.org/10.1364/OE.27.023095
27 H. Wu,, W. Wang,, B. Hu,, R. Ma,, J. Liu,, H. Liang,: Multi-color switchable visible light source generated via nonlinear frequency conversion of a random fiber laser. Opt. Express 30(25), 44785–44797 (2022)
https://doi.org/10.1364/OE.471112
28 E.M. Dianov,, M.V. Grekov,, I.A. Bufetov,, S.A. Vasiliev,, O.I. Medvedkov,, V.G. Plotnichenko,, V.V. Koltashev,, A.V. Belov,, M.M. Bubnov,, S.L. Semjonov,, A.M. Prokhorov,: CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)
https://doi.org/10.1049/el:19971054
29 E.M. Dianov,, A.M. Prokhorov,: Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000)
https://doi.org/10.1109/2944.902151
30 N.S. Kim,, M. Prabhu,, C. Li,, J. Song,, K. Ueda,: 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun. 176(1–3), 219–222 (2000)
https://doi.org/10.1016/S0030-4018(00)00525-3
31 S.K. Sim,, H.C. Lim,, L.W. Lee,, L.C. Chia,, R.F. Wu,, I. Cristiani,, M. Rini,, V. Degiorgio,: High-power cascaded Raman fibre laser using phosphosilicate fiber. Electron. Lett. 40(12), 738–739 (2004)
https://doi.org/10.1049/el:20040517
32 Z. Luo,, Z. Cai,, J. Huang,, C. Ye,, C. Huang,, H. Xu,, W.D. Zhong,: Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 33(14), 1602–1604 (2008)
https://doi.org/10.1364/OL.33.001602
33 S.A. Babin,, I.D. Vatnik,, AYu. Laptev,, M.M. Bubnov,, E.M. Dianov,: High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22(21), 24929–24934 (2014)
https://doi.org/10.1364/OE.22.024929
34 I.A. Lobach,, S.I. Kablukov,, S.A. Babin,: Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm. Opt. Lett. 42(18), 3526–3529 (2017)
https://doi.org/10.1364/OL.42.003526
35 D.S. Kharenko,, V.D. Efremov,, E.A. Evmenova,, S.A. Babin,: Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express 26(12), 15084–15089 (2018)
https://doi.org/10.1364/OE.26.015084
36 Z. Xiong,, N. Moore,, Z.G. Li,, G.C. Lim,: 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. J. Lightwave Technol. 21(10), 2377–2381 (2003)
https://doi.org/10.1109/JLT.2003.818174
37 J. Dong,, L. Zhang,, J. Zhou,, W. Pan,, X. Gu,, Y. Feng,: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)
https://doi.org/10.1364/OL.44.001801
38 J. Ye,, Y. Zhang,, J. Xu,, J. Song,, T. Yao,, H. Xiao,, J. Leng,, P. Zhou,: Investigations on the extreme frequency shift of phosphosilicate random fiber laser. J. Lightwave Technol. 38(14), 3737–3744 (2020)
https://doi.org/10.1109/JLT.2020.2977389
39 J. Ye,, C. Fan,, J. Xu,, H. Xiao,, J. Leng,, P. Zhou,: 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng. 9, e55 (2021)
https://doi.org/10.1017/hpl.2021.43
40 X. Cheng,, S. Cui,, X. Zeng,, J. Zhou,, Y. Feng,: Spectral and RIN properties of a single-frequency Raman fiber amplifier copumped by ASE source. Opt. Express 29(10), 15764–15771 (2021)
https://doi.org/10.1364/OE.424063
41 Y. Zhang,, J. Song,, J. Ye,, J. Xu,, T. Yao,, P. Zhou,: Tunable random Raman fiber laser at 1.7 µm region with high spectral purity. Opt. Express 27(20), 28800–28807 (2019)
https://doi.org/10.1364/OE.27.028800
42 J. Ye,, X. Ma,, Y. Zhang,, J. Xu,, H. Zhang,, T. Yao,, J. Leng,, P. Zhou,: From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX 2(1), 15 (2021)
https://doi.org/10.1186/s43074-021-00037-x
43 V. Balaswamy,, S. Ramachandran,, V.R. Supradeepa,: High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express 27(7), 9725–9732 (2019)
https://doi.org/10.1364/OE.27.009725
44 Y. Zhang,, J. Xu,, J. Ye,, J. Song,, T. Yao,, P. Zhou,: Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res. 8(7), 1155–1160 (2020)
https://doi.org/10.1364/PRJ.390950
45 X. Ma,, J. Xu,, J. Ye,, Y. Zhang,, L. Huang,, T. Yao,, J. Leng,, Z. Pan,, P. Zhou,: Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng. 10, e8 (2022)
https://doi.org/10.1017/hpl.2021.60
46 M. Wang,, Z. Wang,, L. Liu,, Q. Hu,, H. Xiao,, X. Xu,: Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings. Photon. Res. 7(2), 167–171 (2019)
https://doi.org/10.1364/PRJ.7.000167
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed