Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (2) : 12    https://doi.org/10.1007/s12200-024-00115-5
Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection
Yupei Liang1, Mingyu Liu1, Fan Tang1, Yanhong Guo1, Hao Zhang1, Shihan Liu1, Yanping Yang1, Guangming Zhao2, Teng Tan1(), Baicheng Yao1,3()
1. Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China
2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3. Engineering Center of Integrated Optoelectronic & Radio Meta-Chips, University of Electronic Science and Technology, Chengdu 611731, China
 Download: PDF(5025 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as – 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

Keywords Microresonator      Optical frequency comb      Graphene      Gas sensing     
Corresponding Author(s): Teng Tan,Baicheng Yao   
Issue Date: 09 May 2024
 Cite this article:   
Yupei Liang,Mingyu Liu,Fan Tang, et al. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Front. Optoelectron., 2024, 17(2): 12.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00115-5
https://academic.hep.com.cn/foe/EN/Y2024/V17/I2/12
1 S.T. Cundiff,, J. Ye,: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
https://doi.org/10.1103/RevModPhys.75.325
2 M. Takamoto,, F.L. Hong,, R. Higashi,, H. Katori,: An optical lattice clock. Nature 435(7040), 321–324 (2005)
https://doi.org/10.1038/nature03541
3 N. Picqué,, T.W. Hänsch,: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019).
https://doi.org/10.1038/s41566-018-0347-5
4 J.T. Li,, B. Chang,, J.T. Du,, T. Tan,, Y. Geng,, H. Zhou,, Y.P. Liang,, H. Zhang,, G.F. Yan,, L.M. Ma,, Z.L. Ran,, Z.N. Wang,, B.C. Yao,, Y.J. Rao,: Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv. 10(3), eadf8666(2024)
https://doi.org/10.1126/sciadv.adf8666
5 L. Chang,, S. Liu,, J.E. Bowers,: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
https://doi.org/10.1038/s41566-021-00945-1
6 T. Udem,: Optical Frequency Metrology. In: Reference Module in Materials Science and Materials Engineering, Elsevier (2016)
https://doi.org/10.1016/B978-0-12-803581-8.01862-2
7 Y. Geng,, H. Zhou,, X. Han,, W. Cui,, Q. Zhang,, B. Liu,, G. Deng,, Q. Zhou,, K. Qiu,: Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun. 13(1), 1070(2022)
https://doi.org/10.1038/s41467-022-28712-y
8 Y. Li,, N. An,, Z. Lu,, Y. Wang,, B. Chang,, T. Tan,, X. Guo,, X. Xu,, J. He,, H. Xia,, Z. Wu,, Y. Su,, Y. Liu,, Y. Rao,, G. Soavi,, B. Yao,: Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat. Commun. 13(1), 3138(2022)
https://doi.org/10.1038/s41467-022-30901-8
9 X. Xu,, M. Tan,, B. Corcoran,, J. Wu,, A. Boes,, T.G. Nguyen,, S.T. Chu,, B.E. Little,, D.G. Hicks,, R. Morandotti,, A. Mitchell,, D.J. Moss,: 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589(7840), 44–51 (2021)
https://doi.org/10.1038/s41586-020-03063-0
10 C. Qin,, J. Du,, T. Tan,, B. Chang,, K. Jia,, Y. Liang,, W. Wang,, Y. Guo,, H. Xia,, S. Zhu,, Y. Rao,, Z. Xie,, B. Yao,: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662(2023)
https://doi.org/10.1002/lpor.202200662
11 T. Tan,, Z. Yuan,, H. Zhang,, G. Yan,, S. Zhou,, N. An,, B. Peng,, G. Soavi,, Y. Rao,, B. Yao,: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716(2021)
https://doi.org/10.1038/s41467-021-26740-8
12 T.J. Kippenberg,, A.L. Gaeta,, M. Lipson,, M.L. Gorodetsky,: Dissipative Kerr solitons in optical microresonators. Science 361, 640 (2018)
https://doi.org/10.1126/science.aan8083
13 V. Brasch,, M. Geiselmann,, M.H.P. Pfeiffer,, T.J. Kippenberg,: Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24(25), 29312–29320 (2016)
https://doi.org/10.1364/OE.24.029312
14 H. Zhou,, Y. Geng,, W. Cui,, S.W. Huang,, Q. Zhou,, K. Qiu,, C. Wei Wong,: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)
https://doi.org/10.1038/s41377-019-0161-y
15 C. Qin,, K. Jia,, Q. Li,, T. Tan,, X. Wang,, Y. Guo,, S.W. Huang,, Y. Liu,, S. Zhu,, Z. Xie,, Y. Rao,, B. Yao,: Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9(1), 185(2020)
https://doi.org/10.1038/s41377-020-00419-z
16 T. Hansson,, D. Modotto,, S. Wabnitz,: Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88(2), 023819(2013)
https://doi.org/10.1103/PhysRevA.88.023819
17 R. Chen,, H. Shu,, B. Shen,, L. Chang,, W. Xie,, W. Liao,, Z. Tao,, J.E. Bowers,, X. Wang,: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
https://doi.org/10.1038/s41566-023-01158-4
18 Y. Guo,, Z. Li,, N. An,, Y. Guo,, Y. Wang,, Y. Yuan,, H. Zhang,, T. Tan,, C. Wu,, B. Peng,, G. Soavi,, Y. Rao,, B. Yao,: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), e2207777(2022)
https://doi.org/10.1002/adma.202207777
19 H. Zhang,, T. Tan,, H.J. Chen,, Y. Yu,, W. Wang,, B. Chang,, Y. Liang,, Y. Guo,, H. Zhou,, H. Xia,, Q. Gong,, C.W. Wong,, Y. Rao,, Y.F. Xiao,, B. Yao,: Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Phys. Rev. Lett. 130(15), 153802(2023)
https://doi.org/10.1103/PhysRevLett.130.153802
20 N. An,, T. Tan,, Z. Peng,, C. Qin,, Z. Yuan,, L. Bi,, C. Liao,, Y. Wang,, Y. Rao,, G. Soavi,, B. Yao,: Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20(9), 6473–6480 (2020)
https://doi.org/10.1021/acs.nanolett.0c02174
21 T. Tan,, X. Jiang,, C. Wang,, B. Yao,, H. Zhang,: 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. (Weinh.) 7(11), 2000058(2020)
https://doi.org/10.1002/advs.202000058
22 V. Torres-Company,, D. Castelló-Lurbe,, E. Silvestre,: Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express 22(4), 4678–4691 (2014)
https://doi.org/10.1364/OE.22.004678
23 I.H. Agha,, Y. Okawachi,, A.L. Gaeta,: Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17(18), 16209–16215 (2009)
https://doi.org/10.1364/OE.17.016209
24 A.K. Vinod,, S.W. Huang,, J. Yang,, M. Yu,, D.L. Kwong,, C.W. Wong,: Frequency microcomb stabilization via dual-microwave control. Commun. Phys. 4(1), 81(2021)
https://doi.org/10.1038/s42005-021-00573-9
25 P. Del’Haye,, K. Beha,, S.B. Papp,, S.A. Diddams,: Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112(4), 043905(2014)
https://doi.org/10.1103/PhysRevLett.112.043905
26 T. Herr,, K. Hartinger,, J. Riemensberger,, C.Y. Wang,, E. Gavartin,, R. Holzwarth,, M.L. Gorodetsky,, T.J. Kippenberg,: Universal formation dynamics and noise of Kerr-frequency combs in micro-resonators. Nat. Photonics 6(7), 480–487 (2012)
https://doi.org/10.1038/nphoton.2012.127
27 J. Li,, H. Lee,, T. Chen,, K.J. Vahala,: Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109(23), 233901(2012)
https://doi.org/10.1103/PhysRevLett.109.233901
28 Y. Wang,, Y. Li,, Y. Li,, H. Zhang,, Z. Liu,, Y. Guo,, Z. Wang,, J. He,, X. Guo,, Y. Wang,, B. Yao,: Noise canceled graphene-micro-cavity fiber laser sensor for ultrasensitive gas detection. Photon. Res. 11(8), A1(2023)
https://doi.org/10.1364/PRJ.492473
29 S.A. Mikhailov,, K. Ziegler,: New electromagnetic mode in graphene. Phys. Rev. Lett. 99(1), 016803(2007)
https://doi.org/10.1103/PhysRevLett.99.016803
30 B. Yao,, S.W. Huang,, Y. Liu,, A.K. Vinod,, C. Choi,, M. Hoff,, Y. Li,, M. Yu,, Z. Feng,, D.L. Kwong,, Y. Huang,, Y. Rao,, X. Duan,, C.W. Wong,: Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558(7710), 410–414 (2018)
https://doi.org/10.1038/s41586-018-0216-x
31 L.A. Lugiato,, R. Lefever,: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209–2211 (1987)
https://doi.org/10.1103/PhysRevLett.58.2209
32 S. Fujii,, T. Kato,, R. Suzuki,, A. Hori,, T. Tanabe,: Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B 35(1), 100(2018)
https://doi.org/10.1364/JOSAB.35.000100
33 T. Liu,, S. Sun,, Y. Gao,, S. Wang,, Y. Chu,, H. Guo,: Optical microcombs in whispering gallery mode crystalline resonators with dispersive intermode interactions. Photon. Res. 10(12), 2866(2022)
https://doi.org/10.1364/PRJ.470243
34 A.A. Savchenkov,, A.B. Matsko,, V.S. Ilchenko,, L. Maleki,: Optical resonators with ten million finesse. Opt. Express 15(11), 6768–6773 (2007)
https://doi.org/10.1364/OE.15.006768
35 S.W. Huang,, J. Yang,, M. Yu,, B.H. McGuyer,, D.L. Kwong,, T. Zelevinsky,, C.W. Wong,: A broadband chip-scale optical frequency synthesizer at 2.7 × 10-16 relative uncertainty. Sci. Adv. 2(4), e1501489(2016)
https://doi.org/10.1126/sciadv.1501489
[1] O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario. Impact of device resistances in the performance of graphene-based terahertz photodetectors[J]. Front. Optoelectron., 2024, 17(2): 19-.
[2] Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Front. Optoelectron., 2024, 17(2): 17-.
[3] Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao. All laser direct writing process for temperature sensor based on graphene and silver[J]. Front. Optoelectron., 2024, 17(1): 5-.
[4] Pengfei Liu, Hao Wen, Linhao Ren, Lei Shi, Xinliang Zhang. χ(2) nonlinear photonics in integrated microresonators[J]. Front. Optoelectron., 2023, 16(3): 18-.
[5] Sergey N. Mantsevich, Ekaterina I. Kostyleva, Andrey N. Danilin, Vladimir S. Khorkin. Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser[J]. Front. Optoelectron., 2023, 16(3): 21-.
[6] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[7] Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Front. Optoelectron., 2022, 15(4): 42-.
[8] Pan Jiang, Peili Li, Yiming Fan. Broadband optical frequency comb generation based on single electro-absorption modulation driven by radio frequency coupled signals[J]. Front. Optoelectron., 2022, 15(4): 45-.
[9] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[10] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[11] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[12] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[13] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[14] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[15] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed