Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (2) : 17    https://doi.org/10.1007/s12200-024-00121-7
Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses
Junjun Xue1, Jiaming Tong1, Zhujun Gao1, Zhouyu Chen2, Haoyu Fang2, Saisai Wang1(), Ting Zhi1, Jin Wang1()
1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
 Download: PDF(3803 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An ultraviolet-infrared (UV-IR) dual-wavelength photodetector (PD) based on a monolayer (ML) graphene/GaN heterostructure has been successfully fabricated in this work. The ML graphene was synthesized by chemical vapor deposition (CVD) and subsequently transferred onto GaN substrate using polymethylmethacrylate (PMMA). The morphological and optical properties of the as-prepared graphene and GaN were presented. The fabricated PD based on the graphene/GaN heterostructure exhibited excellent rectify behavior by measuring the current–voltage (I–V) characteristics under dark conditions, and the spectral response demonstrated that the device revealed an UV-IR dual-wavelength photoresponse. In addition, the energy band structure and absorption properties of the ML graphene/GaN heterostructure were theoretically investigated based on density functional theory (DFT) to explore the underlying physical mechanism of the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure PD device. This work paves the way for the development of innovative GaN-based dual-wavelength optoelectronic devices, offering a potential strategy for future applications in the field of advanced photodetection technology.

Keywords Wide bandgap semiconductors      Graphene      Dual-wavelength      Photodetector     
Corresponding Author(s): Saisai Wang,Jin Wang   
Issue Date: 13 June 2024
 Cite this article:   
Junjun Xue,Jiaming Tong,Zhujun Gao, et al. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Front. Optoelectron., 2024, 17(2): 17.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00121-7
https://academic.hep.com.cn/foe/EN/Y2024/V17/I2/17
1 C. Zeng,, W. Lin,, T. He,, Y. Zhao,, Y. Sun,, Q. Cui,, X. Zhang,, S. Lu,, X. Zhang,, Y. Xu,, M. Kong,, B. Zhang,: Ultravioletinfrared dual-color photodetector based on vertical GaN nanowire array and graphene. Chin. Opt. Lett. 18(11), 112501 (2020)
https://doi.org/10.3788/COL202018.112501
2 A.G.U. Perera,, G. Ariyawansa,, M.B.M. Rinzan,, M. Stevens,, M. Alevli,, N. Dietz,, S.G. Matsik,, A. Asghar,, I.T. Ferguson,, H. Luo,, A. Bezinger,, H.C. Liu,: Performance improvements of ultraviolet/infrared dual-band detectors. Infrared Phys. Technol. 50(2–3), 142–148 (2007)
https://doi.org/10.1016/j.infrared.2006.10.013
3 J. Guo,, B. Ye,, Y. Gu,, Y. Liu,, X. Yang,, F. Xie,, X. Zhang,, W. Qian,, X. Zhang,, N. Lu,, G. Yang,: Broadband photodetector for ultraviolet to visible wavelengths based on the Ba2PbI4/GaN heterostructure. ACS Appl. Mater. Interfaces 15(48), 56014–56021 (2023)
https://doi.org/10.1021/acsami.3c13114
4 H. Liu,, B. Ye,, Y. Gu,, Y. Liu,, X. Yang,, F. Xie,, X. Zhang,, W. Qian,, X. Zhang,, N. Lu,, G. Yang,: UV-visible dual-band photodetector based on an all-inorganic Mn-doped CsPbCl3/GaN type-II heterojunction. Appl. Phys. Lett. 123(23), 232105 (2023)
https://doi.org/10.1063/5.0175089
5 B.J. Ye,, Y.S. Liu,, F. Xie,, X.F. Yang,, Y. Gu,, X.M. Zhang,, W.Y. Qian,, C. Zhu,, N.Y. Lu,, G.Q. Chen,, G.F. Yang,: Dual-wavelength photodetector based on layered WSe2/n-GaN van der Waals heterostructure. Mater. Today Nano 21, 100295 (2023)
https://doi.org/10.1016/j.mtnano.2022.100295
6 L. Qi,, X. Li,, Z. Tang,, S. Yin,, Y. Zhao,: Monolithically integrated UV/IR dual-color photodetector with AlGaN/GaN heterojunction structure. Semicond. Technol. 39(8), 575–578 (2014)
7 D.K. Singh,, R.K. Pant,, K.K. Nanda,, S.B. Krupanidhi,: Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Appl. Phys. Lett. 119(12), 121102 (2021)
https://doi.org/10.1063/5.0060403
8 H.K. Sandhu,, J.W. John,, A. Jakhar,, A. Sharma,, A. Jain,, S. Das,: MoSe2/n-GaN heterojunction induced high photoconductive gain for low-noise broadband photodetection from ultraviolet to near-infrared wavelengths. Adv. Mater. Interfaces. 9(12), 2102200 (2022)
https://doi.org/10.1002/admi.202102200
9 S.V. Solanke,, R. Soman,, M. Rangarajan,, S. Raghavan,, D.N. Nath,: UV/near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction. Sens. Actuator A Phys. 317, 112455 (2021)
https://doi.org/10.1016/j.sna.2020.112455
10 X. Tang,, Z. Hao,, L. Wang,, J. Yu,, X. Wang,, Y. Luo,, C. Sun,, Y. Han,, B. Xiong,, J. Wang,, H. Li,: Plasmon-enhanced hot-electron photodetector based on Au/GaN-nanopillar arrays for short-wave-infrared detection. Appl. Sci. (Basel) 12(9), 4277 (2022)
https://doi.org/10.3390/app12094277
11 X. Zhang,, B. Liu,, Q. Liu,, W. Yang,, C. Xiong,, J. Li,, X. Jiang,: Ultrasensitive and highly selective photodetections of UV-A rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9(3), 2669–2677 (2017)
https://doi.org/10.1021/acsami.6b14907
12 H. Rabiee Golgir,, D.W. Li,, K. Keramatnejad,, Q.M. Zou,, J. Xiao,, F. Wang,, L. Jiang,, J.F. Silvain,, Y.F. Lu,: Fast growth of GaN epilayers via laser-assisted metal-organic chemical vapor deposition for ultraviolet photodetector applications. ACS Appl. Mater. Interfaces 9(25), 21539–21547 (2017)
https://doi.org/10.1021/acsami.7b03554
13 J. Guo,, Y. Gu,, Y. Liu,, F. Liang,, W. Chen,, F. Xie,, X. Yang,, W. Qian,, X. Zhang,, G. Chen,, G. Yang,: Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors. IEEE Trans. Electron Dev. 70(5), 2352–2357 (2023)
https://doi.org/10.1109/TED.2023.3258920
14 B. Gong,, B. Ye,, Y. Gu,, F. Xie,, X. Zhang,, W. Qian,, X. Zhang,, N. Lu,, G. Yang,: Self-powered GaN-based MSM ultraviolet photodetector with asymmetrical interdigitated structure. IEEE Trans. Electron Dev. 71(1), 922–926 (2024)
https://doi.org/10.1109/TED.2023.3338183
15 H. Tian,, Q. Liu,, A. Hu,, X. He,, Z. Hu,, X. Guo,: Hybrid graphene/ GaN ultraviolet photo-transistors with high responsivity and speed. Opt. Express 26(5), 5408–5415 (2018)
https://doi.org/10.1364/OE.26.005408
16 A. Gundimeda,, S. Krishna,, N. Aggarwal,, A. Sharma,, N.D. Sharma,, K.K. Maurya,, S. Husale,, G. Gupta,: Fabrication of nonpolar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110(10), 103507 (2017)
https://doi.org/10.1063/1.4978427
17 J. Yang,, L. Tang,, W. Luo,, J. Shen,, D. Zhou,, S. Feng,, X. Wei,, H. Shi,: Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors. ACS Appl. Mater. Interfaces 11(33), 30421–30429 (2019)
https://doi.org/10.1021/acsami.9b08268
18 C. Xie,, Y. Wang,, Z.X. Zhang,, D. Wang,, L.B. Luo,: Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19, 41–83 (2018)
https://doi.org/10.1016/j.nantod.2018.02.009
19 X. Wei,, F.G. Yan,, Q.S. Lv,, C. Shen,, K.Y. Wang,: Fast gatetunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9(24), 8388–8392 (2017)
https://doi.org/10.1039/C7NR03124F
20 P. Deb,, J.C. Dhar,: Fast response UV photodetection using TiO2 nanowire/graphene oxide thin-film heterostructure. IEEE Photonics Technol. Lett. 31(8), 571–574 (2019)
https://doi.org/10.1109/LPT.2019.2900283
21 D. Nowak,, M. Clapa,, P. Kula,, M. Sochacki,, B. Stonio,, M. Galazka,, M. Pelka,, D. Kuten,, P. Niedzielski,: Influence of the interactions at the graphene-substrate boundary on graphene sensitivity to UV irradiation. Materials (Basel). 12(23), 3949 (2019)
https://doi.org/10.3390/ma12233949
22 X. Guo,, W. Wang,, H. Nan,, Y. Yu,, J. Jiang,, W. Zhao,, J. Li,, Z. Zafar,, N. Xiang,, Z. Ni,, W. Hu,, Y. You,, Z. Ni,: High-performance graphene photodetector using interfacial gating. Optica 3(10), 1066–1070 (2016)
https://doi.org/10.1364/OPTICA.3.001066
23 W. Hu,, Z. Ye,, L. Liao,, H. Chen,, L. Chen,, R. Ding,, L. He,, X. Chen,, W. Lu,: 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 39(17), 5184 (2014)
https://doi.org/10.1364/OL.39.005184
24 T. He,, H. Ma,, Z. Wang,, Q. Li,, S. Liu,, S. Duan,, T. Xu,, J. Wang,, H. Wu,, F. Zhong,, Y. Ye,, J. Wu,, S. Lin,, K. Zhang,, P. Martyniuk,, A. Rogalski,, P. Wang,, L. Li,, H. Lin,, W. Hu,: On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics. 18(1), 60–67 (2024)
https://doi.org/10.1038/s41566-023-01309-7
25 S. Kim,, T.H. Seo,, M.J. Kim,, K.M. Song,, E.K. Suh,, H. Kim,: Graphene-GaN Schottky diodes. Nano Res. 8(4), 1327–1338 (2015)
https://doi.org/10.1007/s12274-014-0624-7
26 T.H. Seo,, K.J. Lee,, T.S. Oh,, Y.S. Lee,, H. Jeong,, A.H. Park,, H. Kim,, Y.R. Choi,, E.K. Suh,, T.V. Cuong,, V.H. Pham,, J.S. Chung,, E.J. Kim,: Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode. Appl. Phys. Lett. 98(25), 251114 (2011)
https://doi.org/10.1063/1.3601462
27 T. Hoon Seo,, B. Kyoung Kim,, G. Shin,, C. Lee,, M. Jong Kim,, H. Kim,, E.K. Suh,: Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes. Appl. Phys. Lett. 103(5), 051105 (2013)
https://doi.org/10.1063/1.4817256
28 H. Cho,, C. Lee,, S.I. Oh,, S. Park,, H.C. Kim,, M.J. Kim,: K.M. J,: Parametric study of methanol chemical vapor deposition growth for graphene. Carbon. Lett. 13(4), 205–211 (2012)
https://doi.org/10.5714/CL.2012.13.4.205
29 S. Smidstrup,, T. Markussen,, P. Vancraeyveld,, J. Wellendorff,, J. Schneider,, T. Gunst,, B. Verstichel,, D. Stradi,, P.A. Khomyakov,, U.G. Vej-Hansen,, M.E. Lee,, S.T. Chill,, F. Rasmussen,, G. Penazzi,, F. Corsetti,, A. Ojanperä,, K. Jensen,, M.L.N. Palsgaard,, U. Martinez,, A. Blom,, M. Brandbyge,, K. Stokbro,: Quantum ATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter. 32(1), 015901 (2020)
https://doi.org/10.1088/1361-648X/ab4007
30 G.H. Han,, F. Güneş,, J.J. Bae,, E.S. Kim,, S.J. Chae,, H.J. Shin,, J.Y. Choi,, D. Pribat,, Y.H. Lee,: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11(10), 4144–4148 (2011)
https://doi.org/10.1021/nl201980p
31 A.C. Ferrari,, J.C. Meyer,, V. Scardaci,, C. Casiraghi,, M. Lazzeri,, F. Mauri,, S. Piscanec,, D. Jiang,, K.S. Novoselov,, S. Roth,, A.K. Geim,: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
https://doi.org/10.1103/PhysRevLett.97.187401
32 F. Yang,, H. Cong,, K. Yu,, L. Zhou,, N. Wang,, Z. Liu,, C. Li,, Q. Wang,, B. Cheng,: Ultrathin broadband germanium-graphene hybrid photodetector with high performance. ACS Appl. Mater. Interfaces 9(15), 13422–13429 (2017)
https://doi.org/10.1021/acsami.6b16511
33 X. Wei,, F. Yan,, Q. Lv,, W. Zhu,, C. Hu,, A. Patanè,, K. Wang,: Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater. 7(12), 1900190 (2019)
https://doi.org/10.1002/adom.201900190
34 Ö.F. Yüksel,, M. Kuş,, N. Şimşir,, H. Şafak,, M. Şahin,, E. Yenel,: A detailed analysis of current-voltage characteristics of Au/perylenemonoimide/n-Si Schottky barrier diodes over a wide temperature range. J. Appl. Phys. 110(2), 024507 (2011)
https://doi.org/10.1063/1.3610394
35 C. Liu,, E. Li,, Y. Zheng,, K. Bai,, Z. Cui,, D. Ma,: Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure. J. Mater. Sci. 56(19), 11402–11413 (2021)
https://doi.org/10.1007/s10853-021-05998-9
36 L.G. Ferreira,, M. Marques,, L.K. Teles,: Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys Rev B Condens Matter Mater Phys. 78(12), 125116 (2008)
https://doi.org/10.1103/PhysRevB.78.125116
37 Z. Wu,, Y. Lu,, W. Xu,, Y. Zhang,, J. Li,, S. Lin,: Surface plasmon enhanced graphene/p-GaN heterostructure light-emitting-diode by Ag nano-particles. Nano Energy 30, 362–367 (2016)
https://doi.org/10.1016/j.nanoen.2016.10.028
[1] O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario. Impact of device resistances in the performance of graphene-based terahertz photodetectors[J]. Front. Optoelectron., 2024, 17(2): 19-.
[2] Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Front. Optoelectron., 2024, 17(2): 12-.
[3] Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao. All laser direct writing process for temperature sensor based on graphene and silver[J]. Front. Optoelectron., 2024, 17(1): 5-.
[4] Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu. Enhancement of silicon sub-bandgap photodetection by helium-ion implantation[J]. Front. Optoelectron., 2023, 16(4): 41-.
[5] Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Jianquan Yao. Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation[J]. Front. Optoelectron., 2023, 16(4): 33-.
[6] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[7] Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Front. Optoelectron., 2022, 15(4): 42-.
[8] Fu Qiu, Yutian Lei, Zhiwen Jin. Copper-based metal halides for X-ray and photodetection[J]. Front. Optoelectron., 2022, 15(4): 47-.
[9] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
[10] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[11] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[12] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[13] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[14] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[15] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed